Huang, Deshuang
Exact Fit Attention in Node-Holistic Graph Convolutional Network for Improved EEG-Based Driver Fatigue Detection
Xu, Meiyan, Chen, Qingqing, Chen, Duo, Ding, Yi, Wang, Jingyuan, Gu, Peipei, Pan, Yijie, Huang, Deshuang, Zhang, Xun, Guo, Jiayang
-- EEG-based fatigue monitoring can effectively reduce the incidence of related traffic accidents. In the past decade, with the advancement of deep learning, convolu-tional neural networks (CNN) have been increasingly used for EEG signal processing. However, due to the data's non-Euclidean characteristics, existing CNNs may lose important spatial information from EEG, specifically channel correlation. Thus, we propose the node-holistic graph convo-lutional network (NHGNet), a model that uses graphic convolution to dynamically learn each channel's features. The interpretability is enhanced by revealing critical areas of brain activity and their interrelations in various mental states. In validations on two public datasets, NHGNet outperforms the SOTAs. Specifically, in the intra-subject, NHGNet improved detection accuracy by at least 2.34% and 3.42%, and in the inter-subjects, it improved by at least 2.09% and 15.06%. Visualization research on the model revealed that the central parietal area plays an important role in detecting fatigue levels, whereas the frontal and temporal lobes are essential for maintaining vigilance. Duo Chen is with the School of Artificial Intelligence and Information T echnology, Nanjing University of Chinese Medicine, Nanjing 210023, China (e-mail: 380013@njucm.edu.cn). Yi Ding is with the College of Computing and Data Science, Nanyang T echnological University, Singapore.
Single-Stage Broad Multi-Instance Multi-Label Learning (BMIML) with Diverse Inter-Correlations and its application to medical image classification
Lai, Qi, Zhou, Jianhang, Gan, Yanfen, Vong, Chi-Man, Huang, Deshuang
described by multiple instances (e.g., image patches) and simultaneously associated with multiple labels. Existing MIML methods are useful in many applications but most of which suffer from relatively low accuracy and training efficiency due to several issues: i) the inter-label correlations(i.e., the probabilistic correlations between the multiple labels corresponding to an object) are neglected; ii) the inter-instance correlations (i.e., the probabilistic correlations of different instances in predicting the object label) cannot be learned directly (or jointly) with other types of correlations due to the missing instance labels; iii) diverse inter-correlations (e.g., inter-label correlations, inter-instance correlations) can only be learned in multiple stages. To resolve these issues, a new single-stage framework called broad multi-instance multi-label learning (BMIML) is proposed. In BMIML, there are three innovative modules: i) an auto-weighted label enhancement learning (AWLEL) based on broad learning system (BLS) is designed, which simultaneously and efficiently captures the inter-label correlations while traditional BLS cannot; ii) A specific MIML neural network called scalable multi-instance probabilistic regression (SMIPR) is constructed to effectively estimate the inter-instance correlations using the object label only, which can provide additional probabilistic information for learning; iii) Finally, an interactive decision optimization (IDO) is designed to combine and optimize the results from AWLEL and SMIPR and form a single-stage framework. Experiments show that BMIML is highly competitive to (or even better than) existing methods in accuracy and much faster than most MIML methods even for large medical image data sets (> 90K images).