Goto

Collaborating Authors

 Huang, Dehao


HGDiffuser: Efficient Task-Oriented Grasp Generation via Human-Guided Grasp Diffusion Models

arXiv.org Artificial Intelligence

Task-oriented grasping (TOG) is essential for robots to perform manipulation tasks, requiring grasps that are both stable and compliant with task-specific constraints. Humans naturally grasp objects in a task-oriented manner to facilitate subsequent manipulation tasks. By leveraging human grasp demonstrations, current methods can generate high-quality robotic parallel-jaw task-oriented grasps for diverse objects and tasks. However, they still encounter challenges in maintaining grasp stability and sampling efficiency. These methods typically rely on a two-stage process: first performing exhaustive task-agnostic grasp sampling in the 6-DoF space, then applying demonstration-induced constraints (e.g., contact regions and wrist orientations) to filter candidates. This leads to inefficiency and potential failure due to the vast sampling space. To address this, we propose the Human-guided Grasp Diffuser (HGDiffuser), a diffusion-based framework that integrates these constraints into a guided sampling process. Through this approach, HGDiffuser directly generates 6-DoF task-oriented grasps in a single stage, eliminating exhaustive task-agnostic sampling. Furthermore, by incorporating Diffusion Transformer (DiT) blocks as the feature backbone, HGDiffuser improves grasp generation quality compared to MLP-based methods. Experimental results demonstrate that our approach significantly improves the efficiency of task-oriented grasp generation, enabling more effective transfer of human grasping strategies to robotic systems. To access the source code and supplementary videos, visit https://sites.google.com/view/hgdiffuser.


RTAGrasp: Learning Task-Oriented Grasping from Human Videos via Retrieval, Transfer, and Alignment

arXiv.org Artificial Intelligence

Task-oriented grasping (TOG) is crucial for robots to accomplish manipulation tasks, requiring the determination of TOG positions and directions. Existing methods either rely on costly manual TOG annotations or only extract coarse grasping positions or regions from human demonstrations, limiting their practicality in real-world applications. To address these limitations, we introduce RTAGrasp, a Retrieval, Transfer, and Alignment framework inspired by human grasping strategies. Specifically, our approach first effortlessly constructs a robot memory from human grasping demonstration videos, extracting both TOG position and direction constraints. Then, given a task instruction and a visual observation of the target object, RTAGrasp retrieves the most similar human grasping experience from its memory and leverages semantic matching capabilities of vision foundation models to transfer the TOG constraints to the target object in a training-free manner. Finally, RTAGrasp aligns the transferred TOG constraints with the robot's action for execution. Evaluations on the public TOG benchmark, TaskGrasp dataset, show the competitive performance of RTAGrasp on both seen and unseen object categories compared to existing baseline methods. Real-world experiments further validate its effectiveness on a robotic arm. Our code, appendix, and video are available at \url{https://sites.google.com/view/rtagrasp/home}.


FoundationGrasp: Generalizable Task-Oriented Grasping with Foundation Models

arXiv.org Artificial Intelligence

Task-oriented grasping (TOG), which refers to the problem of synthesizing grasps on an object that are configurationally compatible with the downstream manipulation task, is the first milestone towards tool manipulation. Analogous to the activation of two brain regions responsible for semantic and geometric reasoning during cognitive processes, modeling the complex relationship between objects, tasks, and grasps requires rich prior knowledge about objects and tasks. Existing methods typically limit the prior knowledge to a closed-set scope and cannot support the generalization to novel objects and tasks out of the training set. To address such a limitation, we propose FoundationGrasp, a foundation model-based TOG framework that leverages the open-ended knowledge from foundation models to learn generalizable TOG skills. Comprehensive experiments are conducted on the contributed Language and Vision Augmented TaskGrasp (LaViA-TaskGrasp) dataset, demonstrating the superiority of FoudationGrasp over existing methods when generalizing to novel object instances, object classes, and tasks out of the training set. Furthermore, the effectiveness of FoudationGrasp is validated in real-robot grasping and manipulation experiments on a 7 DoF robotic arm. Our code, data, appendix, and video are publicly available at https://sites.google.com/view/foundationgrasp.


GraspGPT: Leveraging Semantic Knowledge from a Large Language Model for Task-Oriented Grasping

arXiv.org Artificial Intelligence

Task-oriented grasping (TOG) refers to the problem of predicting grasps on an object that enable subsequent manipulation tasks. To model the complex relationships between objects, tasks, and grasps, existing methods incorporate semantic knowledge as priors into TOG pipelines. However, the existing semantic knowledge is typically constructed based on closed-world concept sets, restraining the generalization to novel concepts out of the pre-defined sets. To address this issue, we propose GraspGPT, a large language model (LLM) based TOG framework that leverages the open-end semantic knowledge from an LLM to achieve zero-shot generalization to novel concepts. We conduct experiments on Language Augmented TaskGrasp (LA-TaskGrasp) dataset and demonstrate that GraspGPT outperforms existing TOG methods on different held-out settings when generalizing to novel concepts out of the training set. The effectiveness of GraspGPT is further validated in real-robot experiments. Our code, data, appendix, and video are publicly available at https://sites.google.com/view/graspgpt/.


Efficient Object Rearrangement via Multi-view Fusion

arXiv.org Artificial Intelligence

The prospect of assistive robots aiding in object organization has always been compelling. In an image-goal setting, the robot rearranges the current scene to match the single image captured from the goal scene. The key to an image-goal rearrangement system is estimating the desired placement pose of each object based on the single goal image and observations from the current scene. In order to establish sufficient associations for accurate estimation, the system should observe an object from a viewpoint similar to that in the goal image. Existing image-goal rearrangement systems, due to their reliance on a fixed viewpoint for perception, often require redundant manipulations to randomly adjust an object's pose for a better perspective. Addressing this inefficiency, we introduce a novel object rearrangement system that employs multi-view fusion. By observing the current scene from multiple viewpoints before manipulating objects, our approach can estimate a more accurate pose without redundant manipulation times. A standard visual localization pipeline at the object level is developed to capitalize on the advantages of multi-view observations. Simulation results demonstrate that the efficiency of our system outperforms existing single-view systems. The effectiveness of our system is further validated in a physical experiment.


Task-Oriented Grasp Prediction with Visual-Language Inputs

arXiv.org Artificial Intelligence

To perform household tasks, assistive robots receive commands in the form of user language instructions for tool manipulation. The initial stage involves selecting the intended tool (i.e., object grounding) and grasping it in a task-oriented manner (i.e., task grounding). Nevertheless, prior researches on visual-language grasping (VLG) focus on object grounding, while disregarding the fine-grained impact of tasks on object grasping. Task-incompatible grasping of a tool will inevitably limit the success of subsequent manipulation steps. Motivated by this problem, this paper proposes GraspCLIP, which addresses the challenge of task grounding in addition to object grounding to enable task-oriented grasp prediction with visual-language inputs. Evaluation on a custom dataset demonstrates that GraspCLIP achieves superior performance over established baselines with object grounding only. The effectiveness of the proposed method is further validated on an assistive robotic arm platform for grasping previously unseen kitchen tools given the task specification. Our presentation video is available at: https://www.youtube.com/watch?v=e1wfYQPeAXU.