Huang, Aja
AlphaStar Unplugged: Large-Scale Offline Reinforcement Learning
Mathieu, Michaël, Ozair, Sherjil, Srinivasan, Srivatsan, Gulcehre, Caglar, Zhang, Shangtong, Jiang, Ray, Paine, Tom Le, Powell, Richard, Żołna, Konrad, Schrittwieser, Julian, Choi, David, Georgiev, Petko, Toyama, Daniel, Huang, Aja, Ring, Roman, Babuschkin, Igor, Ewalds, Timo, Bordbar, Mahyar, Henderson, Sarah, Colmenarejo, Sergio Gómez, Oord, Aäron van den, Czarnecki, Wojciech Marian, de Freitas, Nando, Vinyals, Oriol
StarCraft II is one of the most challenging simulated reinforcement learning environments; it is partially observable, stochastic, multi-agent, and mastering StarCraft II requires strategic planning over long time horizons with real-time low-level execution. It also has an active professional competitive scene. StarCraft II is uniquely suited for advancing offline RL algorithms, both because of its challenging nature and because Blizzard has released a massive dataset of millions of StarCraft II games played by human players. This paper leverages that and establishes a benchmark, called AlphaStar Unplugged, introducing unprecedented challenges for offline reinforcement learning. We define a dataset (a subset of Blizzard's release), tools standardizing an API for machine learning methods, and an evaluation protocol. We also present baseline agents, including behavior cloning, offline variants of actor-critic and MuZero. We improve the state of the art of agents using only offline data, and we achieve 90% win rate against previously published AlphaStar behavior cloning agent.
Bayesian Optimization in AlphaGo
Chen, Yutian, Huang, Aja, Wang, Ziyu, Antonoglou, Ioannis, Schrittwieser, Julian, Silver, David, de Freitas, Nando
During the development of AlphaGo, its many hyper-parameters were tuned with Bayesian optimization multiple times. This automatic tuning process resulted in substantial improvements in playing strength. For example, prior to the match with Lee Sedol, we tuned the latest AlphaGo agent and this improved its win-rate from 50% to 66.5% in self-play games. This tuned version was deployed in the final match. Of course, since we tuned AlphaGo many times during its development cycle, the compounded contribution was even higher than this percentage. It is our hope that this brief case study will be of interest to Go fans, and also provide Bayesian optimization practitioners with some insights and inspiration.