Hu, Zhiyuan
MMVU: Measuring Expert-Level Multi-Discipline Video Understanding
Zhao, Yilun, Xie, Lujing, Zhang, Haowei, Gan, Guo, Long, Yitao, Hu, Zhiyuan, Hu, Tongyan, Chen, Weiyuan, Li, Chuhan, Song, Junyang, Xu, Zhijian, Wang, Chengye, Pan, Weifeng, Shangguan, Ziyao, Tang, Xiangru, Liang, Zhenwen, Liu, Yixin, Zhao, Chen, Cohan, Arman
We introduce MMVU, a comprehensive expert-level, multi-discipline benchmark for evaluating foundation models in video understanding. MMVU includes 3,000 expert-annotated questions spanning 27 subjects across four core disciplines: Science, Healthcare, Humanities & Social Sciences, and Engineering. Compared to prior benchmarks, MMVU features three key advancements. First, it challenges models to apply domain-specific knowledge and perform expert-level reasoning to analyze specialized-domain videos, moving beyond the basic visual perception typically assessed in current video benchmarks. Second, each example is annotated by human experts from scratch. We implement strict data quality controls to ensure the high quality of the dataset. Finally, each example is enriched with expert-annotated reasoning rationals and relevant domain knowledge, facilitating in-depth analysis. We conduct an extensive evaluation of 32 frontier multimodal foundation models on MMVU. The latest System-2-capable models, o1 and Gemini 2.0 Flash Thinking, achieve the highest performance among the tested models. However, they still fall short of matching human expertise. Through in-depth error analyses and case studies, we offer actionable insights for future advancements in expert-level, knowledge-intensive video understanding for specialized domains.
Natural Language Reinforcement Learning
Feng, Xidong, Wan, Ziyu, Fu, Haotian, Liu, Bo, Yang, Mengyue, Koushik, Girish A., Hu, Zhiyuan, Wen, Ying, Wang, Jun
Reinforcement Learning (RL) mathematically formulates decision-making with Markov Decision Process (MDP). With MDPs, researchers have achieved remarkable breakthroughs across various domains, including games, robotics, and language models. This paper seeks a new possibility, Natural Language Reinforcement Learning (NLRL), by extending traditional MDP to natural language-based representation space. Specifically, NLRL innovatively redefines RL principles, including task objectives, policy, value function, Bellman equation, and policy iteration, into their language counterparts. With recent advancements in large language models (LLMs), NLRL can be practically implemented to achieve RL-like policy and value improvement by either pure prompting or gradient-based training. Experiments over Maze, Breakthrough, and Tic-Tac-Toe games demonstrate the effectiveness, efficiency, and interpretability of the NLRL framework among diverse use cases. Our code will be released at https://github.com/waterhorse1/Natural-language-RL.
Meta-optimized Angular Margin Contrastive Framework for Video-Language Representation Learning
Nguyen, Thong, Bin, Yi, Wu, Xiaobao, Dong, Xinshuai, Hu, Zhiyuan, Le, Khoi, Nguyen, Cong-Duy, Ng, See-Kiong, Tuan, Luu Anh
Data quality stands at the forefront of deciding the effectiveness of video-language representation learning. However, video-text pairs in previous data typically do not align perfectly with each other, which might lead to video-language representations that do not accurately reflect cross-modal semantics. Moreover, previous data also possess an uneven distribution of concepts, thereby hampering the downstream performance across unpopular subjects. To address these problems, we propose a contrastive objective with a subtractive angular margin to regularize cross-modal representations in their effort to reach perfect similarity. Furthermore, to adapt to the non-uniform concept distribution, we propose a multi-layer perceptron (MLP)-parameterized weighting function that maps loss values to sample weights which enable dynamic adjustment of the model's focus throughout the training. With the training guided by a small amount of unbiased meta-data and augmented by video-text data generated by large vision-language model, we improve video-language representations and achieve superior performances on commonly used video question answering and text-video retrieval datasets.
Encoding and Controlling Global Semantics for Long-form Video Question Answering
Nguyen, Thong Thanh, Hu, Zhiyuan, Wu, Xiaobao, Nguyen, Cong-Duy T, Ng, See-Kiong, Luu, Anh Tuan
Seeking answers effectively for long videos is essential to build video question answering (videoQA) systems. Previous methods adaptively select frames and regions from long videos to save computations. However, this fails to reason over the whole sequence of video, leading to sub-optimal performance. To address this problem, we introduce a state space layer (SSL) into multi-modal Transformer to efficiently integrate global semantics of the video, which mitigates the video information loss caused by frame and region selection modules. Our SSL includes a gating unit to enable controllability over the flow of global semantics into visual representations. To further enhance the controllability, we introduce a cross-modal compositional congruence (C^3) objective to encourage global semantics aligned with the question. To rigorously evaluate long-form videoQA capacity, we construct two new benchmarks Ego-QA and MAD-QA featuring videos of considerably long length, i.e. 17.5 minutes and 1.9 hours, respectively. Extensive experiments demonstrate the superiority of our framework on these new as well as existing datasets.
Uncertainty of Thoughts: Uncertainty-Aware Planning Enhances Information Seeking in Large Language Models
Hu, Zhiyuan, Liu, Chumin, Feng, Xidong, Zhao, Yilun, Ng, See-Kiong, Luu, Anh Tuan, He, Junxian, Koh, Pang Wei, Hooi, Bryan
In the face of uncertainty, the ability to seek information is of fundamental importance. In many practical applications, such as medical diagnosis and troubleshooting, the information needed to solve the task is not initially given, and has to be actively sought by asking follow-up questions (for example, a doctor asking a patient for more details about their symptoms). In this work, we introduce Uncertainty of Thoughts (UoT), an algorithm to augment large language models with the ability to actively seek information by asking effective questions. UoT combines 1) an uncertainty-aware simulation approach which enables the model to simulate possible future scenarios and how likely they are to occur, 2) uncertainty-based rewards motivated by information gain which incentivizes the model to seek information, and 3) a reward propagation scheme to select the optimal question to ask in a way that maximizes the expected reward. In experiments on medical diagnosis, troubleshooting and the '20 Questions' game, UoT achieves an average performance improvement of 57.8% in the rate of successful task completion across multiple LLMs compared with direct prompting, and also improves efficiency (i.e., the number of questions needed to complete the task).
PoetryDiffusion: Towards Joint Semantic and Metrical Manipulation in Poetry Generation
Hu, Zhiyuan, Liu, Chumin, Feng, Yue, Luu, Anh Tuan, Hooi, Bryan
Controllable text generation is a challenging and meaningful field in natural language generation (NLG). Especially, poetry generation is a typical one with well-defined and strict conditions for text generation which is an ideal playground for the assessment of current methodologies. While prior works succeeded in controlling either semantic or metrical aspects of poetry generation, simultaneously addressing both remains a challenge. In this paper, we pioneer the use of the Diffusion model for generating sonnets and Chinese SongCi poetry to tackle such challenges. In terms of semantics, our PoetryDiffusion model, built upon the Diffusion model, generates entire sentences or poetry by comprehensively considering the entirety of sentence information. This approach enhances semantic expression, distinguishing it from autoregressive and large language models (LLMs). For metrical control, the separation feature of diffusion generation and its constraint control module enable us to flexibly incorporate a novel metrical controller to manipulate and evaluate metrics (format and rhythm). The denoising process in PoetryDiffusion allows for gradual enhancement of semantics and flexible integration of the metrical controller which can calculate and impose penalties on states that stray significantly from the target control distribution. Experimental results on two datasets demonstrate that our model outperforms existing models in automatic evaluation of semantic, metrical, and overall performance as well as human evaluation.
READ-PVLA: Recurrent Adapter with Partial Video-Language Alignment for Parameter-Efficient Transfer Learning in Low-Resource Video-Language Modeling
Nguyen, Thong, Wu, Xiaobao, Dong, Xinshuai, Le, Khoi, Hu, Zhiyuan, Nguyen, Cong-Duy, Ng, See-Kiong, Tuan, Luu Anh
Fully fine-tuning pretrained large-scale transformer models has become a popular paradigm for video-language modeling tasks, such as temporal language grounding and video-language summarization. With a growing number of tasks and limited training data, such full fine-tuning approach leads to costly model storage and unstable training. To overcome these shortcomings, we introduce lightweight adapters to the pre-trained model and only update them at fine-tuning time. However, existing adapters fail to capture intrinsic temporal relations among video frames or textual words. Moreover, they neglect the preservation of critical task-related information that flows from the raw video-language input into the adapter's low-dimensional space. To address these issues, we first propose a novel REcurrent ADapter (READ) that employs recurrent computation to enable temporal modeling capability. Second, we propose Partial Video-Language Alignment (PVLA) objective via the use of partial optimal transport to maintain task-related information flowing into our READ modules. We validate our READ-PVLA framework through extensive experiments where READ-PVLA significantly outperforms all existing fine-tuning strategies on multiple low-resource temporal language grounding and video-language summarization benchmarks.
MAgIC: Investigation of Large Language Model Powered Multi-Agent in Cognition, Adaptability, Rationality and Collaboration
Xu, Lin, Hu, Zhiyuan, Zhou, Daquan, Ren, Hongyu, Dong, Zhen, Keutzer, Kurt, Ng, See Kiong, Feng, Jiashi
Large Language Models (LLMs) have marked a significant advancement in the field of natural language processing, demonstrating exceptional capabilities in reasoning, tool usage, and memory. As their applications extend into multi-agent environments, a need has arisen for a comprehensive evaluation framework that captures their abilities in reasoning, planning, collaboration, and more. This work introduces a novel benchmarking framework specifically tailored to assess LLMs within multi-agent settings, providing quantitative metrics to evaluate their judgment, reasoning, deception, self-awareness, cooperation, coordination, and rationality. We utilize games such as Chameleon and Undercover, alongside game theory scenarios like Cost Sharing, Multi-player Prisoner's Dilemma, and Public Good, to create diverse testing environments. Our framework is fortified with the Probabilistic Graphical Modeling (PGM) method, enhancing the LLMs' capabilities in navigating complex social and cognitive dimensions. The benchmark evaluates seven multi-agent systems powered by different LLMs, quantitatively highlighting a significant capability gap over threefold between the strongest, GPT-4, and the weakest, Llama-2-70B. It also confirms that our PGM enhancement boosts the inherent abilities of all selected models by 50% on average. Our codes are released here https://github.com/cathyxl/MAgIC.
Unlocking the Potential of User Feedback: Leveraging Large Language Model as User Simulator to Enhance Dialogue System
Hu, Zhiyuan, Feng, Yue, Luu, Anh Tuan, Hooi, Bryan, Lipani, Aldo
Dialogue systems and large language models (LLMs) have gained considerable attention. However, the direct utilization of LLMs as task-oriented dialogue (TOD) models has been found to underperform compared to smaller task-specific models. Nonetheless, it is crucial to acknowledge the significant potential of LLMs and explore improved approaches for leveraging their impressive abilities. Motivated by the goal of leveraging LLMs, we propose an alternative approach called User-Guided Response Optimization (UGRO) to combine it with a smaller TOD model. This approach uses LLM as annotation-free user simulator to assess dialogue responses, combining them with smaller fine-tuned end-to-end TOD models. By utilizing the satisfaction feedback generated by LLMs, UGRO further optimizes the supervised fine-tuned TOD model. Specifically, the TOD model takes the dialogue history as input and, with the assistance of the user simulator's feedback, generates high-satisfaction responses that meet the user's requirements. Through empirical experiments on two TOD benchmarks, we validate the effectiveness of our method. The results demonstrate that our approach outperforms previous state-of-the-art (SOTA) results.
Enhancing Large Language Model Induced Task-Oriented Dialogue Systems Through Look-Forward Motivated Goals
Hu, Zhiyuan, Feng, Yue, Deng, Yang, Li, Zekun, Ng, See-Kiong, Luu, Anh Tuan, Hooi, Bryan
Recently, the development of large language models (LLMs) has been significantly enhanced the question answering and dialogue generation, and makes them become increasingly popular in current practical scenarios. While unlike the general dialogue system which emphasizes the semantic performance, the task-oriented dialogue (ToD) systems aim to achieve the dialogue goal efficiently and successfully in multiple turns. Unfortunately, existing LLM-induced ToD systems lack the direct reward toward the final goal and do not take account of the dialogue proactivity that can strengthen the dialogue efficiency. To fill these gaps, we introduce the ProToD (Proactively Goal-Driven LLM-Induced ToD) approach, which anticipates the future dialogue actions and incorporates the goal-oriented reward signal to enhance ToD systems. Additionally, we present a novel evaluation method that assesses ToD systems based on goal-driven dialogue simulations. This method allows us to gauge user satisfaction, system efficiency and successful rate while overcoming the limitations of current Information and Success metrics. Empirical experiments conducted on the MultiWoZ 2.1 dataset demonstrate that our model can achieve superior performance using only 10% of the data compared to previous end-to-end fully supervised models. This improvement is accompanied by enhanced user satisfaction and efficiency.