Hu, Zhikai
Improve Knowledge Distillation via Label Revision and Data Selection
Lan, Weichao, Cheung, Yiu-ming, Xu, Qing, Liu, Buhua, Hu, Zhikai, Li, Mengke, Chen, Zhenghua
Knowledge distillation (KD) has become a widely used technique in the field of model compression, which aims to transfer knowledge from a large teacher model to a lightweight student model for efficient network development. In addition to the supervision of ground truth, the vanilla KD method regards the predictions of the teacher as soft labels to supervise the training of the student model. Based on vanilla KD, various approaches have been developed to further improve the performance of the student model. However, few of these previous methods have considered the reliability of the supervision from teacher models. Supervision from erroneous predictions may mislead the training of the student model. This paper therefore proposes to tackle this problem from two aspects: Label Revision to rectify the incorrect supervision and Data Selection to select appropriate samples for distillation to reduce the impact of erroneous supervision. In the former, we propose to rectify the teacher's inaccurate predictions using the ground truth. In the latter, we introduce a data selection technique to choose suitable training samples to be supervised by the teacher, thereby reducing the impact of incorrect predictions to some extent. Experiment results demonstrate the effectiveness of our proposed method, and show that our method can be combined with other distillation approaches, improving their performance.
Adjusting Logit in Gaussian Form for Long-Tailed Visual Recognition
Li, Mengke, Cheung, Yiu-ming, Lu, Yang, Hu, Zhikai, Lan, Weichao, Huang, Hui
It is not uncommon that real-world data are distributed with a long tail. For such data, the learning of deep neural networks becomes challenging because it is hard to classify tail classes correctly. In the literature, several existing methods have addressed this problem by reducing classifier bias provided that the features obtained with long-tailed data are representative enough. However, we find that training directly on long-tailed data leads to uneven embedding space. That is, the embedding space of head classes severely compresses that of tail classes, which is not conducive to subsequent classifier learning. %further improving model performance. This paper therefore studies the problem of long-tailed visual recognition from the perspective of feature level. We introduce feature augmentation to balance the embedding distribution. The features of different classes are perturbed with varying amplitudes in Gaussian form. Based on these perturbed features, two novel logit adjustment methods are proposed to improve model performance at a modest computational overhead. Subsequently, the distorted embedding spaces of all classes can be calibrated. In such balanced-distributed embedding spaces, the biased classifier can be eliminated by simply retraining the classifier with class-balanced sampling data. Extensive experiments conducted on benchmark datasets demonstrate the superior performance of the proposed method over the state-of-the-art ones.