Goto

Collaborating Authors

 Hu, Zhanhao


Toxicity Detection for Free

arXiv.org Artificial Intelligence

Current LLMs are generally aligned to follow safety requirements and tend to refuse toxic prompts. However, LLMs can fail to refuse toxic prompts or be overcautious and refuse benign examples. In addition, state-of-the-art toxicity detectors have low TPRs at low FPR, incurring high costs in real-world applications where toxic examples are rare. In this paper, we explore Moderation Using LLM Introspection (MULI), which detects toxic prompts using the information extracted directly from LLMs themselves. We found significant gaps between benign and toxic prompts in the distribution of alternative refusal responses and in the distribution of the first response token's logits. These gaps can be used to detect toxicities: We show that a toy model based on the logits of specific starting tokens gets reliable performance, while requiring no training or additional computational cost. We build a more robust detector using a sparse logistic regression model on the first response token logits, which greatly exceeds SOTA detectors under multiple metrics.


Physically Realizable Natural-Looking Clothing Textures Evade Person Detectors via 3D Modeling

arXiv.org Artificial Intelligence

Recent works have proposed to craft adversarial clothes for evading person detectors, while they are either only effective at limited viewing angles or very conspicuous to humans. We aim to craft adversarial texture for clothes based on 3D modeling, an idea that has been used to craft rigid adversarial objects such as a 3D-printed turtle. Unlike rigid objects, humans and clothes are non-rigid, leading to difficulties in physical realization. In order to craft natural-looking adversarial clothes that can evade person detectors at multiple viewing angles, we propose adversarial camouflage textures (AdvCaT) that resemble one kind of the typical textures of daily clothes, camouflage textures. We leverage the Voronoi diagram and Gumbel-softmax trick to parameterize the camouflage textures and optimize the parameters via 3D modeling. Moreover, we propose an efficient augmentation pipeline on 3D meshes combining topologically plausible projection (TopoProj) and Thin Plate Spline (TPS) to narrow the gap between digital and real-world objects. We printed the developed 3D texture pieces on fabric materials and tailored them into T-shirts and trousers. Experiments show high attack success rates of these clothes against multiple detectors.


Amplification trojan network: Attack deep neural networks by amplifying their inherent weakness

arXiv.org Artificial Intelligence

Recent works found that deep neural networks (DNNs) can be fooled by adversarial examples, which are crafted by adding adversarial noise on clean inputs. The accuracy of DNNs on adversarial examples will decrease as the magnitude of the adversarial noise increase. In this study, we show that DNNs can be also fooled when the noise is very small under certain circumstances. This new type of attack is called Amplification Trojan Attack (ATAttack). Specifically, we use a trojan network to transform the inputs before sending them to the target DNN. This trojan network serves as an amplifier to amplify the inherent weakness of the target DNN. The target DNN, which is infected by the trojan network, performs normally on clean data while being more vulnerable to adversarial examples. Since it only transforms the inputs, the trojan network can hide in DNN-based pipelines, e.g. by infecting the pre-processing procedure of the inputs before sending them to the DNNs. This new type of threat should be considered in developing safe DNNs.


Language-Driven Anchors for Zero-Shot Adversarial Robustness

arXiv.org Artificial Intelligence

Deep neural networks are known to be susceptible to adversarial attacks. In this work, we focus on improving adversarial robustness in the challenging zero-shot image classification setting. To address this issue, we propose LAAT, a novel Language-driven, Anchor-based Adversarial Training strategy. LAAT utilizes a text encoder to generate fixed anchors (normalized feature embeddings) for each category and then uses these anchors for adversarial training. By leveraging the semantic consistency of the text encoders, LAAT can enhance the adversarial robustness of the image model on novel categories without additional examples. We identify the large cosine similarity problem of recent text encoders and design several effective techniques to address it. The experimental results demonstrate that LAAT significantly improves zero-shot adversarial performance, outperforming previous state-of-the-art adversarially robust one-shot methods. Moreover, our method produces substantial zero-shot adversarial robustness when models are trained on large datasets such as ImageNet-1K and applied to several downstream datasets.


On the Privacy Effect of Data Enhancement via the Lens of Memorization

arXiv.org Artificial Intelligence

Machine learning poses severe privacy concerns as it has been shown that the learned models can reveal sensitive information about their training data. Many works have investigated the effect of widely-adopted data augmentation (DA) and adversarial training (AT) techniques, termed data enhancement in the paper, on the privacy leakage of machine learning models. Such privacy effects are often measured by membership inference attacks (MIAs), which aim to identify whether a particular example belongs to the training set or not. We propose to investigate privacy from a new perspective called memorization. Through the lens of memorization, we find that previously deployed MIAs produce misleading results as they are less likely to identify samples with higher privacy risks as members compared to samples with low privacy risks. To solve this problem, we deploy a recent attack that can capture individual samples' memorization degrees for evaluation. Through extensive experiments, we unveil non-trivial findings about the connections between three essential properties of machine learning models, including privacy, generalization gap, and adversarial robustness. We demonstrate that, unlike existing results, the generalization gap is shown not highly correlated with privacy leakage. Moreover, stronger adversarial robustness does not necessarily imply that the model is more susceptible to privacy attacks.