Hu, Yibo
MM-RLHF: The Next Step Forward in Multimodal LLM Alignment
Zhang, Yi-Fan, Yu, Tao, Tian, Haochen, Fu, Chaoyou, Li, Peiyan, Zeng, Jianshu, Xie, Wulin, Shi, Yang, Zhang, Huanyu, Wu, Junkang, Wang, Xue, Hu, Yibo, Wen, Bin, Yang, Fan, Zhang, Zhang, Gao, Tingting, Zhang, Di, Wang, Liang, Jin, Rong, Tan, Tieniu
Despite notable advancements in Multimodal Large Language Models (MLLMs), most state-of-the-art models have not undergone thorough alignment with human preferences. This gap exists because current alignment research has primarily achieved progress in specific areas (e.g., hallucination reduction), while the broader question of whether aligning models with human preferences can systematically enhance MLLM capability remains largely unexplored. To this end, we introduce MM-RLHF, a dataset containing $\mathbf{120k}$ fine-grained, human-annotated preference comparison pairs. This dataset represents a substantial advancement over existing resources, offering superior size, diversity, annotation granularity, and quality. Leveraging this dataset, we propose several key innovations to improve both the quality of reward models and the efficiency of alignment algorithms. Notably, we introduce a Critique-Based Reward Model, which generates critiques of model outputs before assigning scores, offering enhanced interpretability and more informative feedback compared to traditional scalar reward mechanisms. Additionally, we propose Dynamic Reward Scaling, a method that adjusts the loss weight of each sample according to the reward signal, thereby optimizing the use of high-quality comparison pairs. Our approach is rigorously evaluated across $\mathbf{10}$ distinct dimensions and $\mathbf{27}$ benchmarks, with results demonstrating significant and consistent improvements in model performance. Specifically, fine-tuning LLaVA-ov-7B with MM-RLHF and our alignment algorithm leads to a $\mathbf{19.5}$% increase in conversational abilities and a $\mathbf{60}$% improvement in safety. We have open-sourced the preference dataset, reward model, training and evaluation code, as well as reward modeling and safety benchmarks. For more details, please visit our project page: https://mm-rlhf.github.io.
Ensuring Force Safety in Vision-Guided Robotic Manipulation via Implicit Tactile Calibration
Wei, Lai, Ma, Jiahua, Hu, Yibo, Zhang, Ruimao
In dynamic environments, robots often encounter constrained movement trajectories when manipulating objects with specific properties, such as doors. Therefore, applying the appropriate force is crucial to prevent damage to both the robots and the objects. However, current vision-guided robot state generation methods often falter in this regard, as they lack the integration of tactile perception. To tackle this issue, this paper introduces a novel state diffusion framework termed SafeDiff. It generates a prospective state sequence from the current robot state and visual context observation while incorporating real-time tactile feedback to refine the sequence. As far as we know, this is the first study specifically focused on ensuring force safety in robotic manipulation. It significantly enhances the rationality of state planning, and the safe action trajectory is derived from inverse dynamics based on this refined planning. In practice, unlike previous approaches that concatenate visual and tactile data to generate future robot state sequences, our method employs tactile data as a calibration signal to adjust the robot's state within the state space implicitly. Additionally, we've developed a large-scale simulation dataset called SafeDoorManip50k, offering extensive multimodal data to train and evaluate the proposed method. Extensive experiments show that our visual-tactile model substantially mitigates the risk of harmful forces in the door opening, across both simulated and real-world settings.
ROSE: Revolutionizing Open-Set Dense Segmentation with Patch-Wise Perceptual Large Multimodal Model
Han, Kunyang, Hu, Yibo, Qu, Mengxue, Shi, Hailin, Zhao, Yao, Wei, Yunchao
Advances in CLIP and large multimodal models (LMMs) have enabled open-vocabulary and free-text segmentation, yet existing models still require predefined category prompts, limiting free-form category self-generation. Most segmentation LMMs also remain confined to sparse predictions, restricting their applicability in open-set environments. In contrast, we propose ROSE, a Revolutionary Open-set dense SEgmentation LMM, which enables dense mask prediction and open-category generation through patch-wise perception. Our method treats each image patch as an independent region of interest candidate, enabling the model to predict both dense and sparse masks simultaneously. Additionally, a newly designed instruction-response paradigm takes full advantage of the generation and generalization capabilities of LMMs, achieving category prediction independent of closed-set constraints or predefined categories. To further enhance mask detail and category precision, we introduce a conversation-based refinement paradigm, integrating the prediction result from previous step with textual prompt for revision. Extensive experiments demonstrate that ROSE achieves competitive performance across various segmentation tasks in a unified framework. Code will be released.
Better to Ask in English: Cross-Lingual Evaluation of Large Language Models for Healthcare Queries
Jin, Yiqiao, Chandra, Mohit, Verma, Gaurav, Hu, Yibo, De Choudhury, Munmun, Kumar, Srijan
Large language models (LLMs) are transforming the ways the general public accesses and consumes information. Their influence is particularly pronounced in pivotal sectors like healthcare, where lay individuals are increasingly appropriating LLMs as conversational agents for everyday queries. While LLMs demonstrate impressive language understanding and generation proficiencies, concerns regarding their safety remain paramount in these high-stake domains. Moreover, the development of LLMs is disproportionately focused on English. It remains unclear how these LLMs perform in the context of non-English languages, a gap that is critical for ensuring equity in the real-world use of these systems.This paper provides a framework to investigate the effectiveness of LLMs as multi-lingual dialogue systems for healthcare queries. Our empirically-derived framework XlingEval focuses on three fundamental criteria for evaluating LLM responses to naturalistic human-authored health-related questions: correctness, consistency, and verifiability. Through extensive experiments on four major global languages, including English, Spanish, Chinese, and Hindi, spanning three expert-annotated large health Q&A datasets, and through an amalgamation of algorithmic and human-evaluation strategies, we found a pronounced disparity in LLM responses across these languages, indicating a need for enhanced cross-lingual capabilities. We further propose XlingHealth, a cross-lingual benchmark for examining the multilingual capabilities of LLMs in the healthcare context. Our findings underscore the pressing need to bolster the cross-lingual capacities of these models, and to provide an equitable information ecosystem accessible to all.
Synthesizing Political Zero-Shot Relation Classification via Codebook Knowledge, NLI, and ChatGPT
Hu, Yibo, Parolin, Erick Skorupa, Khan, Latifur, Brandt, Patrick T., Osorio, Javier, D'Orazio, Vito J.
Recent supervised models for event coding vastly outperform pattern-matching methods. However, their reliance solely on new annotations disregards the vast knowledge within expert databases, hindering their applicability to fine-grained classification. To address these limitations, we explore zero-shot approaches for political event ontology relation classification, by leveraging knowledge from established annotation codebooks. Our study encompasses both ChatGPT and a novel natural language inference (NLI) based approach named ZSP. ZSP adopts a tree-query framework that deconstructs the task into context, modality, and class disambiguation levels. This framework improves interpretability, efficiency, and adaptability to schema changes. By conducting extensive experiments on our newly curated datasets, we pinpoint the instability issues within ChatGPT and highlight the superior performance of ZSP. ZSP achieves an impressive 40% improvement in F1 score for fine-grained Rootcode classification. ZSP demonstrates competitive performance compared to supervised BERT models, positioning it as a valuable tool for event record validation and ontology development. Our work underscores the potential of leveraging transfer learning and existing expertise to enhance the efficiency and scalability of research in the field.
Uncertainty-Aware Reliable Text Classification
Hu, Yibo, Khan, Latifur
Deep neural networks have significantly contributed to the success in predictive accuracy for classification tasks. However, they tend to make over-confident predictions in real-world settings, where domain shifting and out-of-distribution (OOD) examples exist. Most research on uncertainty estimation focuses on computer vision because it provides visual validation on uncertainty quality. However, few have been presented in the natural language process domain. Unlike Bayesian methods that indirectly infer uncertainty through weight uncertainties, current evidential uncertainty-based methods explicitly model the uncertainty of class probabilities through subjective opinions. They further consider inherent uncertainty in data with different root causes, vacuity (i.e., uncertainty due to a lack of evidence) and dissonance (i.e., uncertainty due to conflicting evidence). In our paper, we firstly apply evidential uncertainty in OOD detection for text classification tasks. We propose an inexpensive framework that adopts both auxiliary outliers and pseudo off-manifold samples to train the model with prior knowledge of a certain class, which has high vacuity for OOD samples. Extensive empirical experiments demonstrate that our model based on evidential uncertainty outperforms other counterparts for detecting OOD examples. Our approach can be easily deployed to traditional recurrent neural networks and fine-tuned pre-trained transformers.
Multidimensional Uncertainty-Aware Evidential Neural Networks
Hu, Yibo, Ou, Yuzhe, Zhao, Xujiang, Cho, Jin-Hee, Chen, Feng
Traditional deep neural networks (NNs) have significantly contributed to the state-of-the-art performance in the task of classification under various application domains. However, NNs have not considered inherent uncertainty in data associated with the class probabilities where misclassification under uncertainty may easily introduce high risk in decision making in real-world contexts (e.g., misclassification of objects in roads leads to serious accidents). Unlike Bayesian NN that indirectly infer uncertainty through weight uncertainties, evidential NNs (ENNs) have been recently proposed to explicitly model the uncertainty of class probabilities and use them for classification tasks. An ENN offers the formulation of the predictions of NNs as subjective opinions and learns the function by collecting an amount of evidence that can form the subjective opinions by a deterministic NN from data. However, the ENN is trained as a black box without explicitly considering inherent uncertainty in data with their different root causes, such as vacuity (i.e., uncertainty due to a lack of evidence) or dissonance (i.e., uncertainty due to conflicting evidence). By considering the multidimensional uncertainty, we proposed a novel uncertainty-aware evidential NN called WGAN-ENN (WENN) for solving an out-of-distribution (OOD) detection problem. We took a hybrid approach that combines Wasserstein Generative Adversarial Network (WGAN) with ENNs to jointly train a model with prior knowledge of a certain class, which has high vacuity for OOD samples. Via extensive empirical experiments based on both synthetic and real-world datasets, we demonstrated that the estimation of uncertainty by WENN can significantly help distinguish OOD samples from boundary samples. WENN outperformed in OOD detection when compared with other competitive counterparts.
Learning a High Fidelity Pose Invariant Model for High-resolution Face Frontalization
Cao, Jie, Hu, Yibo, Zhang, Hongwen, He, Ran, Sun, Zhenan
Face frontalization refers to the process of synthesizing the frontal view of a face from a given profile. Due to self-occlusion and appearance distortion in the wild, it is extremely challenging to recover faithful results and preserve texture details in a high-resolution. This paper proposes a High Fidelity Pose Invariant Model (HF-PIM) to produce photographic and identity-preserving results. HF-PIM frontalizes the profiles through a novel texture warping procedure and leverages a dense correspondence field to bind the 2D and 3D surface spaces. We decompose the prerequisite of warping into dense correspondence field estimation and facial texture map recovering, which are both well addressed by deep networks. Different from those reconstruction methods relying on 3D data, we also propose Adversarial Residual Dictionary Learning (ARDL) to supervise facial texture map recovering with only monocular images. Exhaustive experiments on both controlled and uncontrolled environments demonstrate that the proposed method not only boosts the performance of pose-invariant face recognition but also dramatically improves high-resolution frontalization appearances.
Learning a High Fidelity Pose Invariant Model for High-resolution Face Frontalization
Cao, Jie, Hu, Yibo, Zhang, Hongwen, He, Ran, Sun, Zhenan
Face frontalization refers to the process of synthesizing the frontal view of a face from a given profile. Due to self-occlusion and appearance distortion in the wild, it is extremely challenging to recover faithful results and preserve texture details in a high-resolution. This paper proposes a High Fidelity Pose Invariant Model (HF-PIM) to produce photographic and identity-preserving results. HF-PIM frontalizes the profiles through a novel texture warping procedure and leverages a dense correspondence field to bind the 2D and 3D surface spaces. We decompose the prerequisite of warping into dense correspondence field estimation and facial texture map recovering, which are both well addressed by deep networks. Different from those reconstruction methods relying on 3D data, we also propose Adversarial Residual Dictionary Learning (ARDL) to supervise facial texture map recovering with only monocular images. Exhaustive experiments on both controlled and uncontrolled environments demonstrate that the proposed method not only boosts the performance of pose-invariant face recognition but also dramatically improves high-resolution frontalization appearances.