Hu, Xuyang
Test-Time Preference Optimization: On-the-Fly Alignment via Iterative Textual Feedback
Li, Yafu, Hu, Xuyang, Qu, Xiaoye, Li, Linjie, Cheng, Yu
Large language models (LLMs) demonstrate impressive performance but lack the flexibility to adapt to human preferences quickly without retraining. In this work, we introduce Test-time Preference Optimization (TPO), a framework that aligns LLM outputs with human preferences during inference, removing the need to update model parameters. Rather than relying on purely numerical rewards, TPO translates reward signals into textual critiques and uses them as textual rewards to iteratively refine its response. Evaluations on benchmarks covering instruction following, preference alignment, safety, and mathematics reveal that TPO progressively improves alignment with human preferences. Notably, after only a few TPO steps, the initially unaligned Llama-3.1-70B-SFT model can surpass the aligned counterpart, Llama-3.1-70B-Instruct. Furthermore, TPO scales efficiently with both the search width and depth during inference. Through case studies, we illustrate how TPO exploits the innate capacity of LLM to interpret and act upon reward signals. Our findings establish TPO as a practical, lightweight alternative for test-time preference optimization, achieving alignment on the fly. Our code is publicly available at https://github.com/yafuly/TPO.
LLaMA-MoE v2: Exploring Sparsity of LLaMA from Perspective of Mixture-of-Experts with Post-Training
Qu, Xiaoye, Dong, Daize, Hu, Xuyang, Zhu, Tong, Sun, Weigao, Cheng, Yu
Recently, inspired by the concept of sparsity, Mixture-of-Experts (MoE) models have gained increasing popularity for scaling model size while keeping the number of activated parameters constant. In this study, we thoroughly investigate the sparsity of the dense LLaMA model by constructing MoE for both the attention (i.e., Attention MoE) and MLP (i.e., MLP MoE) modules in the transformer blocks. Specifically, we investigate different expert construction methods and granularities under the same activation conditions to analyze the impact of sparsifying the model. Additionally, to comprehensively evaluate the model's capabilities across various domains (e.g., conversation, code, math) after sparsification, we apply sparsity to the instructed large language models (LLMs) and construct instructed MoE models. To counteract the performance degradation resulting from increased sparsity, we design a two-stage post-training strategy to enhance model performance. Experiments on the LLaMA3 model demonstrate the potential effectiveness of this approach for future developments of instructed MoE models. The source codes and models are available at: \url{https://github.com/OpenSparseLLMs/LLaMA-MoE-v2}.