Goto

Collaborating Authors

 Hu, Xiyuan


Milmer: a Framework for Multiple Instance Learning based Multimodal Emotion Recognition

arXiv.org Artificial Intelligence

Emotions play a crucial role in human behavior and decision-making, making emotion recognition a key area of interest in human-computer interaction (HCI). This study addresses the challenges of emotion recognition by integrating facial expression analysis with electroencephalogram (EEG) signals, introducing a novel multimodal framework-Milmer. The proposed framework employs a transformer-based fusion approach to effectively integrate visual and physiological modalities. It consists of an EEG preprocessing module, a facial feature extraction and balancing module, and a cross-modal fusion module. To enhance visual feature extraction, we fine-tune a pre-trained Swin Transformer on emotion-related datasets. Additionally, a cross-attention mechanism is introduced to balance token representation across modalities, ensuring effective feature integration. A key innovation of this work is the adoption of a multiple instance learning (MIL) approach, which extracts meaningful information from multiple facial expression images over time, capturing critical temporal dynamics often overlooked in previous studies. Extensive experiments conducted on the DEAP dataset demonstrate the superiority of the proposed framework, achieving a classification accuracy of 96.72% in the four-class emotion recognition task. Ablation studies further validate the contributions of each module, highlighting the significance of advanced feature extraction and fusion strategies in enhancing emotion recognition performance. Our code are available at https://github.com/liangyubuaa/Milmer.


Progressive Bilateral-Context Driven Model for Post-Processing Person Re-Identification

arXiv.org Artificial Intelligence

Most existing person re-identification methods compute pairwise similarity by extracting robust visual features and learning the discriminative metric. Owing to visual ambiguities, these content-based methods that determine the pairwise relationship only based on the similarity between them, inevitably produce a suboptimal ranking list. Instead, the pairwise similarity can be estimated more accurately along the geodesic path of the underlying data manifold by exploring the rich contextual information of the sample. In this paper, we propose a lightweight post-processing person re-identification method in which the pairwise measure is determined by the relationship between the sample and the counterpart's context in an unsupervised way. We translate the point-to-point comparison into the bilateral point-to-set comparison. The sample's context is composed of its neighbor samples with two different definition ways: the first order context and the second order context, which are used to compute the pairwise similarity in sequence, resulting in a progressive post-processing model. The experiments on four large-scale person re-identification benchmark datasets indicate that (1) the proposed method can consistently achieve higher accuracies by serving as a post-processing procedure after the content-based person re-identification methods, showing its state-of-the-art results, (2) the proposed lightweight method only needs about 6 milliseconds for optimizing the ranking results of one sample, showing its high-efficiency. Code is available at: https://github.com/123ci/PBCmodel.