Goto

Collaborating Authors

 Hu, Xinyu


CFunModel: A "Funny" Language Model Capable of Chinese Humor Generation and Processing

arXiv.org Artificial Intelligence

Humor plays a significant role in daily language communication. With the rapid development of large language models (LLMs), natural language processing has made significant strides in understanding and generating various genres of texts. However, most LLMs exhibit poor performance in generating and processing Chinese humor. In this study, we introduce a comprehensive Chinese humor-related dataset, the Chinese Fun Set (CFunSet). This dataset aggregates existing Chinese humor datasets and includes over 20,000 jokes collected from Tieba-JokeBar, a Chinese online platform known for joke sharing. The resulting corpus comprises more than 160,000 entries. Leveraging CFunSet, we developed the Chinese Fun Model (CFunModel), the first large language model designed to handle various Chinese humor-related tasks including Crosstalk Response Selection, Humor Recognition, Joke Generation, etc. Experimental results demonstrate that CFunModel outperforms popular large language models in these tasks. Our CFunSet is available at https://huggingface.co/datasets/ZhenghanYU/CFunSet and CFunModel is available at https://huggingface.co/ZhenghanYU/CFunModel. A demostration video of our work is available at https://youtu.be/MOsISOJ66Ms.


Exploring the Multilingual NLG Evaluation Abilities of LLM-Based Evaluators

arXiv.org Artificial Intelligence

Previous research has shown that LLMs have potential in multilingual NLG evaluation tasks. However, existing research has not fully explored the differences in the evaluation capabilities of LLMs across different languages. To this end, this study provides a comprehensive analysis of the multilingual evaluation performance of 10 recent LLMs, spanning high-resource and low-resource languages through correlation analysis, perturbation attacks, and fine-tuning. We found that 1) excluding the reference answer from the prompt and using large-parameter LLM-based evaluators leads to better performance across various languages; 2) most LLM-based evaluators show a higher correlation with human judgments in high-resource languages than in low-resource languages; 3) in the languages where they are most sensitive to such attacks, they also tend to exhibit the highest correlation with human judgments; and 4) fine-tuning with data from a particular language yields a broadly consistent enhancement in the model's evaluation performance across diverse languages. Our findings highlight the imbalance in LLMs'evaluation capabilities across different languages and suggest that low-resource language scenarios deserve more attention.


GRNFormer: A Biologically-Guided Framework for Integrating Gene Regulatory Networks into RNA Foundation Models

arXiv.org Artificial Intelligence

Foundation models for single-cell RNA sequencing (scRNA-seq) have shown promising capabilities in capturing gene expression patterns. However, current approaches face critical limitations: they ignore biological prior knowledge encoded in gene regulatory relationships and fail to leverage multi-omics signals that could provide complementary regulatory insights. In this paper, we propose GRNFormer, a new framework that systematically integrates multi-scale Gene Regulatory Networks (GRNs) inferred from multi-omics data into RNA foundation model training. Our framework introduces two key innovations. First, we introduce a pipeline for constructing hierarchical GRNs that capture regulatory relationships at both cell-type-specific and cell-specific resolutions. Second, we design a structure-aware integration framework that addresses the information asymmetry in GRNs through two technical advances: (1) A graph topological adapter using multi-head cross-attention to weight regulatory relationships dynamically, and (2) a novel edge perturbation strategy that perturb GRNs with biologically-informed co-expression links to augment graph neural network training. Comprehensive experiments have been conducted on three representative downstream tasks across multiple model architectures to demonstrate the effectiveness of GRNFormer. It achieves consistent improvements over state-of-the-art (SoTA) baselines: $3.6\%$ increase in drug response prediction correlation, $9.6\%$ improvement in single-cell drug classification AUC, and $1.1\%$ average gain in gene perturbation prediction accuracy.


Aspect-Guided Multi-Level Perturbation Analysis of Large Language Models in Automated Peer Review

arXiv.org Artificial Intelligence

We propose an aspect-guided, multi-level perturbation framework to evaluate the robustness of Large Language Models (LLMs) in automated peer review. Our framework explores perturbations in three key components of the peer review process-papers, reviews, and rebuttals-across several quality aspects, including contribution, soundness, presentation, tone, and completeness. By applying targeted perturbations and examining their effects on both LLM-as-Reviewer and LLM-as-Meta-Reviewer, we investigate how aspect-based manipulations, such as omitting methodological details from papers or altering reviewer conclusions, can introduce significant biases in the review process. We identify several potential vulnerabilities: review conclusions that recommend a strong reject may significantly influence meta-reviews, negative or misleading reviews may be wrongly interpreted as thorough, and incomplete or hostile rebuttals can unexpectedly lead to higher acceptance rates. Statistical tests show that these biases persist under various Chain-of-Thought prompting strategies, highlighting the lack of robust critical evaluation in current LLMs. Our framework offers a practical methodology for diagnosing these vulnerabilities, thereby contributing to the development of more reliable and robust automated reviewing systems.


A Dual-Perspective NLG Meta-Evaluation Framework with Automatic Benchmark and Better Interpretability

arXiv.org Artificial Intelligence

In NLG meta-evaluation, evaluation metrics are typically assessed based on their consistency with humans. However, we identify some limitations in traditional NLG meta-evaluation approaches, such as issues in handling human ratings and ambiguous selections of correlation measures, which undermine the effectiveness of meta-evaluation. In this work, we propose a dual-perspective NLG meta-evaluation framework that focuses on different evaluation capabilities, thereby providing better interpretability. In addition, we introduce a method of automatically constructing the corresponding benchmarks without requiring new human annotations. Furthermore, we conduct experiments with 16 representative LLMs as the evaluators based on our proposed framework, comprehensively analyzing their evaluation performance from different perspectives.


Re-evaluating Automatic LLM System Ranking for Alignment with Human Preference

arXiv.org Artificial Intelligence

Evaluating and ranking the capabilities of different LLMs is crucial for understanding their performance and alignment with human preferences. Due to the high cost and time-consuming nature of human evaluations, an automatic LLM bencher (i.e., an automatic evaluation framework that aims to rank LLMs based on their alignment with human preferences) is indispensable. An automatic LLM bencher consists of four components: the input set (e.g., a user instruction), the evaluation model (e.g., an LLM), the evaluation type (e.g., pairwise comparison), and the aggregation method (e.g., the ELO rating system). However, previous work has not thoroughly explored how to select these components or how their different combinations influence the results. In this work, through controlled experiments, we provide a series of recommendations on how to choose each component to better automate the evaluation of LLMs. Furthermore, we discovered that when evaluating LLMs with similar performance, the performance of the automatic LLM bencher declines sharply, underscoring the limitations of current benchers and calling for future work. Lastly, we found that the evaluation models' performance at the instance level (e.g., the accuracy of selecting the best output) does not always align with their effectiveness when used as a component of a bencher, highlighting the importance of dedicated system-level evaluation of benchers.


Evaluating Self-Generated Documents for Enhancing Retrieval-Augmented Generation with Large Language Models

arXiv.org Artificial Intelligence

The integration of documents generated by LLMs themselves (Self-Docs) alongside retrieved documents has emerged as a promising strategy for retrieval-augmented generation systems. However, previous research primarily focuses on optimizing the use of Self-Docs, with their inherent properties remaining underexplored. To bridge this gap, we first investigate the overall effectiveness of Self-Docs, identifying key factors that shape their contribution to RAG performance (RQ1). Building on these insights, we develop a taxonomy grounded in Systemic Functional Linguistics to compare the influence of various Self-Docs categories (RQ2) and explore strategies for combining them with external sources (RQ3). Our findings reveal which types of Self-Docs are most beneficial and offer practical guidelines for leveraging them to achieve significant improvements in knowledge-intensive question answering tasks.


Analyzing and Evaluating Correlation Measures in NLG Meta-Evaluation

arXiv.org Artificial Intelligence

The correlation between NLG automatic evaluation metrics and human evaluation is often regarded as a critical criterion for assessing the capability of an evaluation metric. However, different grouping methods and correlation coefficients result in various types of correlation measures used in meta-evaluation. In specific evaluation scenarios, prior work often directly follows conventional measure settings, but the characteristics and differences between these measures have not gotten sufficient attention. Therefore, this paper analyzes 12 common correlation measures using a large amount of real-world data from six widely-used NLG evaluation datasets and 32 evaluation metrics, revealing that different measures indeed impact the meta-evaluation results. Furthermore, we propose three perspectives that reflect the capability of meta-evaluation and find that the measure using global grouping and Pearson correlation exhibits the best overall performance, involving the discriminative power, ranking consistency, and sensitivity to score granularity.


SMART-RAG: Selection using Determinantal Matrices for Augmented Retrieval

arXiv.org Artificial Intelligence

Retrieval-Augmented Generation (RAG) has greatly improved large language models (LLMs) by enabling them to generate accurate, contextually grounded responses through the integration of external information. However, conventional RAG approaches, which prioritize top-ranked documents based solely on query-context relevance, often introduce redundancy and conflicting information. This issue is particularly evident in unsupervised retrieval settings, where there are no mechanisms to effectively mitigate these problems, leading to suboptimal context selection. To address this, we propose Selection using Matrices for Augmented Retrieval (SMART) in question answering tasks, a fully unsupervised and training-free framework designed to optimize context selection in RAG. SMART leverages Determinantal Point Processes (DPPs) to simultaneously model relevance, diversity and conflict, ensuring the selection of potentially high-quality contexts. Experimental results across multiple datasets demonstrate that SMART significantly enhances QA performance and surpasses previous unsupervised context selection methods, showing a promising strategy for RAG.


Themis: Towards Flexible and Interpretable NLG Evaluation

arXiv.org Artificial Intelligence

The evaluation of natural language generation (NLG) tasks is a significant and longstanding research issue. With the recent emergence of powerful large language models (LLMs), some studies have turned to LLM-based automatic evaluation methods, which demonstrate great potential to become a new evaluation paradigm following traditional string-based and model-based metrics. However, despite the improved performance of existing methods, they still possess some deficiencies, such as dependency on references and limited evaluation flexibility. Therefore, in this paper, we meticulously construct a large-scale NLG evaluation corpus NLG-Eval with human and GPT-4 annotations to alleviate the lack of relevant data in this field. Furthermore, we propose Themis, an LLM dedicated to NLG evaluation, which has been trained with our designed multi-perspective consistency and rating-oriented preference alignment methods. Themis can conduct flexible and interpretable evaluations without references, and it exhibits superior evaluation performance on various NLG tasks, simultaneously generalizing well to unseen tasks and surpassing other evaluation models, including GPT-4.