Hu, Ruimin
Crowd-level Abnormal Behavior Detection via Multi-scale Motion Consistency Learning
Luo, Linbo, Li, Yuanjing, Yin, Haiyan, Xie, Shangwei, Hu, Ruimin, Cai, Wentong
Detecting abnormal crowd motion emerging from complex interactions of individuals is paramount to ensure the safety of crowds. Crowd-level abnormal behaviors (CABs), e.g., counter flow and crowd turbulence, are proven to be the crucial causes of many crowd disasters. In the recent decade, video anomaly detection (VAD) techniques have achieved remarkable success in detecting individual-level abnormal behaviors (e.g., sudden running, fighting and stealing), but research on VAD for CABs is rather limited. Unlike individual-level anomaly, CABs usually do not exhibit salient difference from the normal behaviors when observed locally, and the scale of CABs could vary from one scenario to another. In this paper, we present a systematic study to tackle the important problem of VAD for CABs with a novel crowd motion learning framework, multi-scale motion consistency network (MSMC-Net). MSMC-Net first captures the spatial and temporal crowd motion consistency information in a graph representation. Then, it simultaneously trains multiple feature graphs constructed at different scales to capture rich crowd patterns. An attention network is used to adaptively fuse the multi-scale features for better CAB detection. For the empirical study, we consider three large-scale crowd event datasets, UMN, Hajj and Love Parade. Experimental results show that MSMC-Net could substantially improve the state-of-the-art performance on all the datasets.
TLR: Transfer Latent Representation for Unsupervised Domain Adaptation
Xiao, Pan, Du, Bo, Wu, Jia, Zhang, Lefei, Hu, Ruimin, Li, Xuelong
Domain adaptation refers to the process of learning prediction models in a target domain by making use of data from a source domain. Many classic methods solve the domain adaptation problem by establishing a common latent space, which may cause the loss of many important properties across both domains. In this manuscript, we develop a novel method, transfer latent representation (TLR), to learn a better latent space. Specifically, we design an objective function based on a simple linear autoencoder to derive the latent representations of both domains. The encoder in the autoencoder aims to project the data of both domains into a robust latent space. Besides, the decoder imposes an additional constraint to reconstruct the original data, which can preserve the common properties of both domains and reduce the noise that causes domain shift. Experiments on cross-domain tasks demonstrate the advantages of TLR over competing methods.
Video-Based Person Re-Identification via Self Paced Weighting
Huang, Wenjun (Wuhan University) | Liang, Chao (Wuhan University) | Yu, Yi (National Institute of Informatics) | Wang, Zheng (Wuhan University) | Ruan, Weijian (Wuhan University) | Hu, Ruimin (Wuhan University)
Person re-identification (re-id) is a fundamental technique to associate various person images, captured by differentsurveillance cameras, to the same person. Compared to the single image based person re-id methods, video-based personre-id has attracted widespread attentions because extra space-time information and more appearance cues that can beused to greatly improve the matching performance. However, most existing video-based person re-id methods equally treatall video frames, ignoring their quality discrepancy caused by object occlusion and motions, which is a common phenomenonin real surveillance scenario. Based on this finding, we propose a novel video-based person re-id method via self paced weighting (SPW). Firstly, we propose a self paced outlier detection method to evaluate the noise degree of video sub sequences. Thereafter, a weighted multi-pair distance metric learning approach is adopted to measure the distance of two person image sequences. Experimental results on two public datasets demonstrate the superiority of the proposed method over current state-of-the-art work.
Multi-Kernel Low-Rank Dictionary Pair Learning for Multiple Features Based Image Classification
Zhu, Xiaoke (Wuhan University) | Jing, Xiao-Yuan (Wuhan University) | Wu, Fei (Nanjing University of Posts and Telecommunications) | Wu, Di (Wuhan University) | Cheng, Li (Wuhan University) | Li, Sen (Wuhan University) | Hu, Ruimin (Wuhan University)
Dictionary learning (DL) is an effective feature learning technique, and has led to interesting results in many classification tasks. Recently, by combining DL with multiple kernel learning (which is a crucial and effective technique for combining different feature representation information), a few multi-kernel DL methods have been presented to solve the multiple feature representations based classification problem. However, how to improve the representation capability and discriminability of multi-kernel dictionary has not been well studied. In this paper, we propose a novel multi-kernel DL approach, named multi-kernel low-rank dictionary pair learning (MKLDPL). Specifically, MKLDPL jointly learns a kernel synthesis dictionary and a kernel analysis dictionary by exploiting the class label information. The learned synthesis and analysis dictionaries work together to implement the coding and reconstruction of samples in the kernel space. To enhance the discriminability of the learned multi-kernel dictionaries, MKLDPL imposes the low-rank regularization on the analysis dictionary, which can make samples from the same class have similar representations. We apply MKLDPL for multiple features based image classification task. Experimental results demonstrate the effectiveness of the proposed approach.