Hu, Mengling
Learning Uniform Clusters on Hypersphere for Deep Graph-level Clustering
Hu, Mengling, Chen, Chaochao, Liu, Weiming, Zhang, Xinyi, Liao, Xinting, Zheng, Xiaolin
Graph clustering has been popularly studied in recent years. However, most existing graph clustering methods focus on node-level clustering, i.e., grouping nodes in a single graph into clusters. In contrast, graph-level clustering, i.e., grouping multiple graphs into clusters, remains largely unexplored. Graph-level clustering is critical in a variety of real-world applications, such as, properties prediction of molecules and community analysis in social networks. However, graph-level clustering is challenging due to the insufficient discriminability of graph-level representations, and the insufficient discriminability makes deep clustering be more likely to obtain degenerate solutions (cluster collapse). To address the issue, we propose a novel deep graph-level clustering method called Uniform Deep Graph Clustering (UDGC). UDGC assigns instances evenly to different clusters and then scatters those clusters on unit hypersphere, leading to a more uniform cluster-level distribution and a slighter cluster collapse. Specifically, we first propose Augmentation-Consensus Optimal Transport (ACOT) for generating uniformly distributed and reliable pseudo labels for partitioning clusters. Then we adopt contrastive learning to scatter those clusters. Besides, we propose Center Alignment Optimal Transport (CAOT) for guiding the model to learn better parameters, which further promotes the cluster performance. Our empirical study on eight well-known datasets demonstrates that UDGC significantly outperforms the state-of-the-art models.
Federated Learning for Short Text Clustering
Hu, Mengling, Chen, Chaochao, Liu, Weiming, Liao, Xinting, Zheng, Xiaolin
Short text clustering has been popularly studied for its significance in mining valuable insights from many short texts. In this paper, we focus on the federated short text clustering (FSTC) problem, i.e., clustering short texts that are distributed in different clients, which is a realistic problem under privacy requirements. Compared with the centralized short text clustering problem that short texts are stored on a central server, the FSTC problem has not been explored yet. To fill this gap, we propose a Federated Robust Short Text Clustering (FSTC) framework. FSTC includes two main modules, i.e., robust short text clustering module and federated cluster center aggregation module. The robust short text clustering module aims to train an effective short text clustering model with local data in each client. We innovatively combine optimal transport to generate pseudo-labels with Gaussian-uniform mixture model to ensure the reliability of the pseudo-supervised data. The federated cluster center aggregation module aims to exchange knowledge across clients without sharing local raw data in an efficient way. The server aggregates the local cluster centers from different clients and then sends the global centers back to all clients in each communication round. Our empirical studies on three short text clustering datasets demonstrate that FSTC significantly outperforms the federated short text clustering baselines.
Joint Local Relational Augmentation and Global Nash Equilibrium for Federated Learning with Non-IID Data
Liao, Xinting, Chen, Chaochao, Liu, Weiming, Zhou, Pengyang, Zhu, Huabin, Shen, Shuheng, Wang, Weiqiang, Hu, Mengling, Tan, Yanchao, Zheng, Xiaolin
Federated learning (FL) is a distributed machine learning paradigm that needs collaboration between a server and a series of clients with decentralized data. To make FL effective in real-world applications, existing work devotes to improving the modeling of decentralized data with non-independent and identical distributions (non-IID). In non-IID settings, there are intra-client inconsistency that comes from the imbalanced data modeling, and inter-client inconsistency among heterogeneous client distributions, which not only hinders sufficient representation of the minority data, but also brings discrepant model deviations. However, previous work overlooks to tackle the above two coupling inconsistencies together. In this work, we propose FedRANE, which consists of two main modules, i.e., local relational augmentation (LRA) and global Nash equilibrium (GNE), to resolve intra- and inter-client inconsistency simultaneously. Specifically, in each client, LRA mines the similarity relations among different data samples and enhances the minority sample representations with their neighbors using attentive message passing. In server, GNE reaches an agreement among inconsistent and discrepant model deviations from clients to server, which encourages the global model to update in the direction of global optimum without breaking down the clients optimization toward their local optimums. We conduct extensive experiments on four benchmark datasets to show the superiority of FedRANE in enhancing the performance of FL with non-IID data.
Robust Representation Learning with Reliable Pseudo-labels Generation via Self-Adaptive Optimal Transport for Short Text Clustering
Zheng, Xiaolin, Hu, Mengling, Liu, Weiming, Chen, Chaochao, Liao, Xinting
Short text clustering is challenging since it takes imbalanced and noisy data as inputs. Existing approaches cannot solve this problem well, since (1) they are prone to obtain degenerate solutions especially on heavy imbalanced datasets, and (2) they are vulnerable to noises. To tackle the above issues, we propose a Robust Short Text Clustering (RSTC) model to improve robustness against imbalanced and noisy data. RSTC includes two modules, i.e., pseudo-label generation module and robust representation learning module. The former generates pseudo-labels to provide supervision for the later, which contributes to more robust representations and correctly separated clusters. To provide robustness against the imbalance in data, we propose self-adaptive optimal transport in the pseudo-label generation module. To improve robustness against the noise in data, we further introduce both class-wise and instance-wise contrastive learning in the robust representation learning module. Our empirical studies on eight short text clustering datasets demonstrate that RSTC significantly outperforms the state-of-the-art models. The code is available at: https://github.com/hmllmh/RSTC.