Hu, Luhui
CoinRobot: Generalized End-to-end Robotic Learning for Physical Intelligence
Zhao, Yu, Liu, Huxian, Chen, Xiang, Sun, Jiankai, Yan, Jiahuan, Hu, Luhui
-- Physical intelligence holds immense promise for advancing embodied intelligence, enabling robots to acquire complex behaviors from demonstrations. However, achieving generalization and transfer across diverse robotic platforms and environments requires careful design of model architectures, training strategies, and data diversity. We present a generalized end-to-end robotic learning framework designed to bridge this gap. Our framework introduces a unified architecture that supports cross-platform adaptability, enabling seamless deployment across industrial-grade robots, collaborative arms, and novel embodiments without task-specific modifications. By integrating multi-task learning with streamlined network designs, it achieves more robust performance than conventional approaches, while maintaining compatibility with varying sensor configurations and action spaces. Notably, Diffusion-based models trained in our framework demonstrated superior performance and generalizability compared to the LeRobot framework, achieving performance improvements across diverse robotic platforms and environmental conditions. Recent studies [1]-[3] have shifted their attention toward exploring the applications of imitation-based techniques in the field of robotic control and manipulation. This trend is largely influenced by the expanding role of generative artificial intelligence across various industrial sectors.
STRIDE: Automating Reward Design, Deep Reinforcement Learning Training and Feedback Optimization in Humanoid Robotics Locomotion
Wu, Zhenwei, Lu, Jinxiong, Chen, Yuxiao, Liu, Yunxin, Zhuang, Yueting, Hu, Luhui
Humanoid robotics presents significant challenges in artificial intelligence, requiring precise coordination and control of high-degree-of-freedom systems. Designing effective reward functions for deep reinforcement learning (DRL) in this domain remains a critical bottleneck, demanding extensive manual effort, domain expertise, and iterative refinement. To overcome these challenges, we introduce STRIDE, a novel framework built on agentic engineering to automate reward design, DRL training, and feedback optimization for humanoid robot locomotion tasks. By combining the structured principles of agentic engineering with large language models (LLMs) for code-writing, zero-shot generation, and in-context optimization, STRIDE generates, evaluates, and iteratively refines reward functions without relying on task-specific prompts or templates. Across diverse environments featuring humanoid robot morphologies, STRIDE outperforms the state-of-the-art reward design framework EUREKA, achieving an average improvement of round 250% in efficiency and task performance. Using STRIDE-generated rewards, simulated humanoid robots achieve sprint-level locomotion across complex terrains, highlighting its ability to advance DRL workflows and humanoid robotics research.
RoboGrasp: A Universal Grasping Policy for Robust Robotic Control
Huang, Yiqi, Davies, Travis, Yan, Jiahuan, Chen, Xiang, Tian, Yu, Hu, Luhui
Imitation learning and world models have shown significant promise in advancing generalizable robotic learning, with robotic grasping remaining a critical challenge for achieving precise manipulation. Existing methods often rely heavily on robot arm state data and RGB images, leading to overfitting to specific object shapes or positions. To address these limitations, we propose RoboGrasp, a universal grasping policy framework that integrates pretrained grasp detection models with robotic learning. By leveraging robust visual guidance from object detection and segmentation tasks, RoboGrasp significantly enhances grasp precision, stability, and generalizability, achieving up to 34% higher success rates in few-shot learning and grasping box prompt tasks. Built on diffusion-based methods, RoboGrasp is adaptable to various robotic learning paradigms, enabling precise and reliable manipulation across diverse and complex scenarios. This framework represents a scalable and versatile solution for tackling real-world challenges in robotic grasping.
Spatially Visual Perception for End-to-End Robotic Learning
Davies, Travis, Yan, Jiahuan, Chen, Xiang, Tian, Yu, Zhuang, Yueting, Huang, Yiqi, Hu, Luhui
Recent advances in imitation learning have shown significant promise for robotic control and embodied intelligence. However, achieving robust generalization across diverse mounted camera observations remains a critical challenge. In this paper, we introduce a video-based spatial perception framework that leverages 3D spatial representations to address environmental variability, with a focus on handling lighting changes. Our approach integrates a novel image augmentation technique, AugBlender, with a state-of-the-art monocular depth estimation model trained on internet-scale data. Together, these components form a cohesive system designed to enhance robustness and adaptability in dynamic scenarios. Our results demonstrate that our approach significantly boosts the success rate across diverse camera exposures, where previous models experience performance collapse. Our findings highlight the potential of video-based spatial perception models in advancing robustness for end-to-end robotic learning, paving the way for scalable, low-cost solutions in embodied intelligence.
VisionGPT-3D: A Generalized Multimodal Agent for Enhanced 3D Vision Understanding
Kelly, Chris, Hu, Luhui, Hu, Jiayin, Tian, Yu, Yang, Deshun, Yang, Bang, Yang, Cindy, Li, Zihao, Huang, Zaoshan, Zou, Yuexian
The evolution of text to visual components facilitates people's daily lives, such as generating image, videos from text and identifying the desired elements within the images. Computer vision models involving the multimodal abilities in the previous days are focused on image detection, classification based on well-defined objects. Large language models (LLMs) introduces the transformation from nature language to visual objects, which present the visual layout for text contexts. OpenAI GPT-4 has emerged as the pinnacle in LLMs, while the computer vision (CV) domain boasts a plethora of state-of-the-art (SOTA) models and algorithms to convert 2D images to their 3D representations. However, the mismatching between the algorithms with the problem could lead to undesired results. In response to this challenge, we propose an unified VisionGPT-3D framework to consolidate the state-of-the-art vision models, thereby facilitating the development of vision-oriented AI. VisionGPT-3D provides a versatile multimodal framework building upon the strengths of multimodal foundation models. It seamlessly integrates various SOTA vision models and brings the automation in the selection of SOTA vision models, identifies the suitable 3D mesh creation algorithms corresponding to 2D depth maps analysis, generates optimal results based on diverse multimodal inputs such as text prompts.
WorldGPT: A Sora-Inspired Video AI Agent as Rich World Models from Text and Image Inputs
Yang, Deshun, Hu, Luhui, Tian, Yu, Li, Zihao, Kelly, Chris, Yang, Bang, Yang, Cindy, Zou, Yuexian
Several text-to-video diffusion models have demonstrated commendable capabilities in synthesizing high-quality video content. However, it remains a formidable challenge pertaining to maintaining temporal consistency and ensuring action smoothness throughout the generated sequences. In this paper, we present an innovative video generation AI agent that harnesses the power of Sora-inspired multimodal learning to build skilled world models framework based on textual prompts and accompanying images. The framework includes two parts: prompt enhancer and full video translation. The first part employs the capabilities of Chat-GPT to meticulously distill and proactively construct precise prompts for each subsequent step, thereby guaranteeing the utmost accuracy in prompt communication and accurate execution in following model operations. The second part employ compatible with existing advanced diffusion techniques to expansively generate and refine the key frame at the conclusion of a video. Then we can expertly harness the power of leading and trailing key frames to craft videos with enhanced temporal consistency and action smoothness. The experimental results confirm that our method has strong effectiveness and novelty in constructing world models from text and image inputs over the other methods.