Goto

Collaborating Authors

 Hu, Liujun


Distributed satellite information networks: Architecture, enabling technologies, and trends

arXiv.org Artificial Intelligence

Driven by the vision of ubiquitous connectivity and wireless intelligence, the evolution of ultra-dense constellation-based satellite-integrated Internet is underway, now taking preliminary shape. Nevertheless, the entrenched institutional silos and limited, nonrenewable heterogeneous network resources leave current satellite systems struggling to accommodate the escalating demands of next-generation intelligent applications. In this context, the distributed satellite information networks (DSIN), exemplified by the cohesive clustered satellites system, have emerged as an innovative architecture, bridging information gaps across diverse satellite systems, such as communication, navigation, and remote sensing, and establishing a unified, open information network paradigm to support resilient space information services. This survey first provides a profound discussion about innovative network architectures of DSIN, encompassing distributed regenerative satellite network architecture, distributed satellite computing network architecture, and reconfigurable satellite formation flying, to enable flexible and scalable communication, computing and control. The DSIN faces challenges from network heterogeneity, unpredictable channel dynamics, sparse resources, and decentralized collaboration frameworks. To address these issues, a series of enabling technologies is identified, including channel modeling and estimation, cloud-native distributed MIMO cooperation, grant-free massive access, network routing, and the proper combination of all these diversity techniques. Furthermore, to heighten the overall resource efficiency, the cross-layer optimization techniques are further developed to meet upper-layer deterministic, adaptive and secure information services requirements. In addition, emerging research directions and new opportunities are highlighted on the way to achieving the DSIN vision.


Variational Source-Channel Coding for Semantic Communication

arXiv.org Artificial Intelligence

Semantic communication technology emerges as a pivotal bridge connecting AI with classical communication. The current semantic communication systems are generally modeled as an Auto-Encoder (AE). AE lacks a deep integration of AI principles with communication strategies due to its inability to effectively capture channel dynamics. This gap makes it difficult to justify the need for joint source-channel coding (JSCC) and to explain why performance improves. This paper begins by exploring lossless and lossy communication, highlighting that the inclusion of data distortion distinguishes semantic communication from classical communication. It breaks the conditions for the separation theorem to hold and explains why the amount of data transferred by semantic communication is less. Therefore, employing JSCC becomes imperative for achieving optimal semantic communication. Moreover, a Variational Source-Channel Coding (VSCC) method is proposed for constructing semantic communication systems based on data distortion theory, integrating variational inference and channel characteristics. Using a deep learning network, we develop a semantic communication system employing the VSCC method and demonstrate its capability for semantic transmission. We also establish semantic communication systems of equivalent complexity employing the AE method and the VAE method. Experimental results reveal that the VSCC model offers superior interpretability compared to AE model, as it clearly captures the semantic features of the transmitted data, represented as the variance of latent variables in our experiments. In addition, VSCC model exhibits superior semantic transmission capabilities compared to VAE model. At the same level of data distortion evaluated by PSNR, VSCC model exhibits stronger human interpretability, which can be partially assessed by SSIM.