Hu, Jinghe
A Hybrid Cross-Stage Coordination Pre-ranking Model for Online Recommendation Systems
Zhao, Binglei, Qi, Houying, Xu, Guang, Ma, Mian, Zhao, Xiwei, Mei, Feng, Xu, Sulong, Hu, Jinghe
Large-scale recommendation systems often adopt cascading architecture consisting of retrieval, pre-ranking, ranking, and re-ranking stages. With strict latency requirements, pre-ranking utilizes lightweight models to perform a preliminary selection from massive retrieved candidates. However, recent works focus solely on improving consistency with ranking, relying exclusively on downstream stages. Since downstream input is derived from the pre-ranking output, they will exacerbate the sample selection bias (SSB) issue and Matthew effect, leading to sub-optimal results. To address the limitation, we propose a novel Hybrid Cross-Stage Coordination Pre-ranking model (HCCP) to integrate information from upstream (retrieval) and downstream (ranking, re-ranking) stages. Specifically, cross-stage coordination refers to the pre-ranking's adaptability to the entire stream and the role of serving as a more effective bridge between upstream and downstream. HCCP consists of Hybrid Sample Construction and Hybrid Objective Optimization. Hybrid sample construction captures multi-level unexposed data from the entire stream and rearranges them to become the optimal guiding "ground truth" for pre-ranking learning. Hybrid objective optimization contains the joint optimization of consistency and long-tail precision through our proposed Margin InfoNCE loss. It is specifically designed to learn from such hybrid unexposed samples, improving the overall performance and mitigating the SSB issue. The appendix describes a proof of the efficacy of the proposed loss in selecting potential positives. Extensive offline and online experiments indicate that HCCP outperforms SOTA methods by improving cross-stage coordination. It contributes up to 14.9% UCVR and 1.3% UCTR in the JD E-commerce recommendation system. Concerning code privacy, we provide a pseudocode for reference.
A Preference-oriented Diversity Model Based on Mutual-information in Re-ranking for E-commerce Search
Wang, Huimu, Li, Mingming, Miao, Dadong, Wang, Songlin, Tang, Guoyu, Liu, Lin, Xu, Sulong, Hu, Jinghe
Re-ranking is a process of rearranging ranking list to more effectively meet user demands by accounting for the interrelationships between items. Existing methods predominantly enhance the precision of search results, often at the expense of diversity, leading to outcomes that may not fulfill the varied needs of users. Conversely, methods designed to promote diversity might compromise the precision of the results, failing to satisfy the users' requirements for accuracy. To alleviate the above problems, this paper proposes a Preference-oriented Diversity Model Based on Mutual-information (PODM-MI), which consider both accuracy and diversity in the re-ranking process. Specifically, PODM-MI adopts Multidimensional Gaussian distributions based on variational inference to capture users' diversity preferences with uncertainty. Then we maximize the mutual information between the diversity preferences of the users and the candidate items using the maximum variational inference lower bound to enhance their correlations. Subsequently, we derive a utility matrix based on the correlations, enabling the adaptive ranking of items in line with user preferences and establishing a balance between the aforementioned objectives. Experimental results on real-world online e-commerce systems demonstrate the significant improvements of PODM-MI, and we have successfully deployed PODM-MI on an e-commerce search platform.
Rethinking Large-scale Pre-ranking System: Entire-chain Cross-domain Models
Song, Jinbo, Huang, Ruoran, Wang, Xinyang, Huang, Wei, Yu, Qian, Chen, Mingming, Yao, Yafei, Fan, Chaosheng, Peng, Changping, Lin, Zhangang, Hu, Jinghe, Shao, Jingping
Industrial systems such as recommender systems and online advertising, have been widely equipped with multi-stage architectures, which are divided into several cascaded modules, including matching, pre-ranking, ranking and re-ranking. As a critical bridge between matching and ranking, existing pre-ranking approaches mainly endure sample selection bias (SSB) problem owing to ignoring the entire-chain data dependence, resulting in sub-optimal performances. In this paper, we rethink pre-ranking system from the perspective of the entire sample space, and propose Entire-chain Cross-domain Models (ECM), which leverage samples from the whole cascaded stages to effectively alleviate SSB problem. Besides, we design a fine-grained neural structure named ECMM to further improve the pre-ranking accuracy. Specifically, we propose a cross-domain multi-tower neural network to comprehensively predict for each stage result, and introduce the sub-networking routing strategy with $L0$ regularization to reduce computational costs. Evaluations on real-world large-scale traffic logs demonstrate that our pre-ranking models outperform SOTA methods while time consumption is maintained within an acceptable level, which achieves better trade-off between efficiency and effectiveness.
Always Strengthen Your Strengths: A Drift-Aware Incremental Learning Framework for CTR Prediction
Liu, Congcong, Teng, Fei, Zhao, Xiwei, Lin, Zhangang, Hu, Jinghe, Shao, Jingping
Click-through rate (CTR) prediction is of great importance in recommendation systems and online advertising platforms. When served in industrial scenarios, the user-generated data observed by the CTR model typically arrives as a stream. Streaming data has the characteristic that the underlying distribution drifts over time and may recur. This can lead to catastrophic forgetting if the model simply adapts to new data distribution all the time. Also, it's inefficient to relearn distribution that has been occurred. Due to memory constraints and diversity of data distributions in large-scale industrial applications, conventional strategies for catastrophic forgetting such as replay, parameter isolation, and knowledge distillation are difficult to be deployed. In this work, we design a novel drift-aware incremental learning framework based on ensemble learning to address catastrophic forgetting in CTR prediction. With explicit error-based drift detection on streaming data, the framework further strengthens well-adapted ensembles and freezes ensembles that do not match the input distribution avoiding catastrophic interference. Both evaluations on offline experiments and A/B test shows that our method outperforms all baselines considered.
On the Adaptation to Concept Drift for CTR Prediction
Liu, Congcong, Li, Yuejiang, Teng, Fei, Zhao, Xiwei, Peng, Changping, Lin, Zhangang, Hu, Jinghe, Shao, Jingping
Click-through rate (CTR) prediction is a crucial task in web search, recommender systems, and online advertisement displaying. In practical application, CTR models often serve with high-speed user-generated data streams, whose underlying distribution rapidly changing over time. The concept drift problem inevitably exists in those streaming data, which can lead to performance degradation due to the timeliness issue. To ensure model freshness, incremental learning has been widely adopted in real-world production systems. However, it is hard for the incremental update to achieve the balance of the CTR models between the adaptability to capture the fast-changing trends and generalization ability to retain common knowledge. In this paper, we propose adaptive mixture of experts (AdaMoE), a new framework to alleviate the concept drift problem by statistical weighting policy in the data stream of CTR prediction. The extensive offline experiments on both benchmark and a real-world industrial dataset, as well as an online A/B testing show that our AdaMoE significantly outperforms all incremental learning frameworks considered.
Telepath: Understanding Users from a Human Vision Perspective in Large-Scale Recommender Systems
Wang, Yu (JD.com) | Xu, Jixing (JD.com) | Wu, Aohan (JD.com) | Li, Mantian (JD.com) | He, Yang (JD.com) | Hu, Jinghe (JD.com) | Yan, Weipeng P. (JD.com)
Designing an e-commerce recommender system that serves hundreds of millions of active users is a daunting challenge. To our best knowledge, the complex brain activity mechanism behind human shopping activities is never considered in existing recommender systems. From a human vision perspective, we found two key factors that affect users’ behaviors: items’ attractiveness and their matching degrees with users’ interests. This paper proposes Telepath, a vision-based bionic recommender system model, which simulates human brain activities in decision making of shopping, thus understanding users from such perspective. The core of Telepath is a complex deep neural network with multiple subnetworks. In practice, the Telepath model has been launched to JD’s recommender system and advertising system and outperformed the former state-of-the-art method. For one of the major item recommendation blocks on the JD app, click-through rate (CTR), gross merchandise value (GMV) and orders have been increased 1.59%, 8.16% and 8.71% respectively by Telepath. For several major ad publishers of JD demand-side platform, CTR, GMV and return on investment have been increased 6.58%, 61.72% and 65.57% respectively by the first launch of Telepath, and further increased 2.95%, 41.75% and 41.37% respectively by the second launch.