Hu, Hui
Unveiling the Role of Message Passing in Dual-Privacy Preservation on GNNs
Zhao, Tianyi, Hu, Hui, Cheng, Lu
Graph Neural Networks (GNNs) are powerful tools for learning representations on graphs, such as social networks. However, their vulnerability to privacy inference attacks restricts their practicality, especially in high-stake domains. To address this issue, privacy-preserving GNNs have been proposed, focusing on preserving node and/or link privacy. This work takes a step back and investigates how GNNs contribute to privacy leakage. Through theoretical analysis and simulations, we identify message passing under structural bias as the core component that allows GNNs to \textit{propagate} and \textit{amplify} privacy leakage. Building upon these findings, we propose a principled privacy-preserving GNN framework that effectively safeguards both node and link privacy, referred to as dual-privacy preservation. The framework comprises three major modules: a Sensitive Information Obfuscation Module that removes sensitive information from node embeddings, a Dynamic Structure Debiasing Module that dynamically corrects the structural bias, and an Adversarial Learning Module that optimizes the privacy-utility trade-off. Experimental results on four benchmark datasets validate the effectiveness of the proposed model in protecting both node and link privacy while preserving high utility for downstream tasks, such as node classification.
Cascading Convolutional Temporal Colour Constancy
Rizzo, Matteo, Conati, Cristina, Jang, Daesik, Hu, Hui
Computational Colour Constancy (CCC) consists of estimating the colour of one or more illuminants in a scene and using them to remove unwanted chromatic distortions. Much research has focused on illuminant estimation for CCC on single images, with few attempts of leveraging the temporal information intrinsic in sequences of correlated images (e.g., the frames in a video), a task known as Temporal Colour Constancy (TCC). The state-of-the-art for TCC is TCCNet, a deep-learning architecture that uses a ConvLSTM for aggregating the encodings produced by CNN submodules for each image in a sequence. We extend this architecture with different models obtained by (i) substituting the TCCNet submodules with C4, the state-of-the-art method for CCC targeting images; (ii) adding a cascading strategy to perform an iterative improvement of the estimate of the illuminant. We tested our models on the recently released TCC benchmark and achieved results that surpass the state-of-the-art. Analyzing the impact of the number of frames involved in illuminant estimation on performance, we show that it is possible to reduce inference time by training the models on few selected frames from the sequences while retaining comparable accuracy.
A Distributed Fair Machine Learning Framework with Private Demographic Data Protection
Hu, Hui, Liu, Yijun, Wang, Zhen, Lan, Chao
Fair machine learning has become a significant research topic with broad societal impact. However, most fair learning methods require direct access to personal demographic data, which is increasingly restricted to use for protecting user privacy (e.g. by the EU General Data Protection Regulation). In this paper, we propose a distributed fair learning framework for protecting the privacy of demographic data. We assume this data is privately held by a third party, which can communicate with the data center (responsible for model development) without revealing the demographic information. We propose a principled approach to design fair learning methods under this framework, exemplify four methods and show they consistently outperform their existing counterparts in both fairness and accuracy across three real-world data sets. We theoretically analyze the framework, and prove it can learn models with high fairness or high accuracy, with their trade-offs balanced by a threshold variable.
Fair Kernel Regression via Fair Feature Embedding in Kernel Space
Okray, Austin, Hu, Hui, Lan, Chao
In recent years, there have been significant efforts on mitigating unethical demographic biases in machine learning methods. However, very little is done for kernel methods. In this paper, we propose a new fair kernel regression method via fair feature embedding (FKR-F$^2$E) in kernel space. Motivated by prior works on feature selection in kernel space and feature processing for fair machine learning, we propose to learn fair feature embedding functions that minimize demographic discrepancy of feature distributions in kernel space. Compared to the state-of-the-art fair kernel regression method and several baseline methods, we show FKR-F$^2$E achieves significantly lower prediction disparity across three real-world data sets.