Hu, Huan
A Multimodal Benchmark Dataset and Model for Crop Disease Diagnosis
Liu, Xiang, Liu, Zhaoxiang, Hu, Huan, Chen, Zezhou, Wang, Kohou, Wang, Kai, Lian, Shiguo
While conversational generative AI has shown considerable potential in enhancing decision-making for agricultural professionals, its exploration has predominantly been anchored in text-based interactions. The evolution of multimodal conversational AI, leveraging vast amounts of image-text data from diverse sources, marks a significant stride forward. However, the application of such advanced vision-language models in the agricultural domain, particularly for crop disease diagnosis, remains underexplored. In this work, we present the crop disease domain multimodal (CDDM) dataset, a pioneering resource designed to advance the field of agricultural research through the application of multimodal learning techniques. The dataset comprises 137,000 images of various crop diseases, accompanied by 1 million question-answer pairs that span a broad spectrum of agricultural knowledge, from disease identification to management practices. By integrating visual and textual data, CDDM facilitates the development of sophisticated question-answering systems capable of providing precise, useful advice to farmers and agricultural professionals. We demonstrate the utility of the dataset by finetuning state-of-the-art multimodal models, showcasing significant improvements in crop disease diagnosis. Specifically, we employed a novel finetuning strategy that utilizes low-rank adaptation (LoRA) to finetune the visual encoder, adapter and language model simultaneously. Our contributions include not only the dataset but also a finetuning strategy and a benchmark to stimulate further research in agricultural technology, aiming to bridge the gap between advanced AI techniques and practical agricultural applications. The dataset is available at https: //github.com/UnicomAI/UnicomBenchmark/tree/main/CDDMBench.
Training Interactive Agent in Large FPS Game Map with Rule-enhanced Reinforcement Learning
Zhang, Chen, Hu, Huan, Zhou, Yuan, Cao, Qiyang, Liu, Ruochen, Wei, Wenya, Liu, Elvis S.
--In the realm of competitive gaming, 3D first-person shooter (FPS) games have gained immense popularity, prompting the development of game AI systems to enhance gameplay. However, deploying game AI in practical scenarios still poses challenges, particularly in large-scale and complex FPS games. In this paper, we focus on the practical deployment of game AI in the online multiplayer competitive 3D FPS game called Arena Breakout, developed by T encent Games. We propose a novel gaming AI system named Private Military Company Agent (PMCA), which is interactable within a large game map and engages in combat with players while utilizing tactical advantages provided by the surrounding terrain. T o address the challenges of navigation and combat in modern 3D FPS games, we introduce a method that combines navigation mesh (Navmesh) and shooting-rule with deep reinforcement learning (NSRL). The integration of Navmesh enhances the agent's global navigation capabilities while shooting behavior is controlled using rule-based methods to ensure controllability. NSRL employs a DRL model to predict when to enable the navigation mesh, resulting in a diverse range of behaviors for the game AI. Customized rewards for human-like behaviors are also employed to align PMCA's behavior with that of human players. I NTRODUCTION First-person shooter (FPS) games in 3D have gained immense popularity in the competitive gaming realm. As these games have evolved from early titles like Maze War and Half-Life to more recent ones such as Apex Legends, CS: GO, and V alorant, there has been a growing interest in developing intelligent AI systems for FPS games.
Fine-grained Attention-based Video Face Recognition
Liu, Zhaoxiang, Hu, Huan, Bai, Jinqiang, Li, Shaohua, Lian, Shiguo
This paper aims to learn a compact representation of a video for video face recognition task. We make the following contributions: first, we propose a meta attention-based aggregation scheme which adaptively and fine-grained weighs the feature along each feature dimension among all frames to form a compact and discriminative representation. It makes the best to exploit the valuable or discriminative part of each frame to promote the performance of face recognition, without discarding or despising low quality frames as usual methods do. Second, we build a feature aggregation network comprised of a feature embedding module and a feature aggregation module. The embedding module is a convolutional neural network used to extract a feature vector from a face image, while the aggregation module consists of cascaded two meta attention blocks which adaptively aggregate the feature vectors into a single fixed-length representation. The network can deal with arbitrary number of frames, and is insensitive to frame order. Third, we validate the performance of proposed aggregation scheme. Experiments on publicly available datasets, such as YouTube face dataset and IJB-A dataset, show the effectiveness of our method, and it achieves competitive performances on both the verification and identification protocols.