Goto

Collaborating Authors

 Hu, En-Pei


Building a Taiwanese Mandarin Spoken Language Model: A First Attempt

arXiv.org Artificial Intelligence

This technical report presents our initial attempt to build a spoken large language model (LLM) for Taiwanese Mandarin, specifically tailored to enable real-time, speech-to-speech interaction in multi-turn conversations. Our end-to-end model incorporates a decoder-only transformer architecture and aims to achieve seamless interaction while preserving the conversational flow, including full-duplex capabilities allowing simultaneous speaking and listening. The paper also details the training process, including data preparation with synthesized dialogues and adjustments for real-time interaction. We also developed a platform to evaluate conversational fluency and response coherence in multi-turn dialogues. We hope the release of the report can contribute to the future development of spoken LLMs in Taiwanese Mandarin.


REBORN: Reinforcement-Learned Boundary Segmentation with Iterative Training for Unsupervised ASR

arXiv.org Artificial Intelligence

Unsupervised automatic speech recognition (ASR) aims to learn the mapping between the speech signal and its corresponding textual transcription without the supervision of paired speech-text data. A word/phoneme in the speech signal is represented by a segment of speech signal with variable length and unknown boundary, and this segmental structure makes learning the mapping between speech and text challenging, especially without paired data. In this paper, we propose REBORN, Reinforcement-Learned Boundary Segmentation with Iterative Training for Unsupervised ASR. REBORN alternates between (1) training a segmentation model that predicts the boundaries of the segmental structures in speech signals and (2) training the phoneme prediction model, whose input is a segmental structure segmented by the segmentation model, to predict a phoneme transcription. Since supervised data for training the segmentation model is not available, we use reinforcement learning to train the segmentation model to favor segmentations that yield phoneme sequence predictions with a lower perplexity. We conduct extensive experiments and find that under the same setting, REBORN outperforms all prior unsupervised ASR models on LibriSpeech, TIMIT, and five non-English languages in Multilingual LibriSpeech. We comprehensively analyze why the boundaries learned by REBORN improve the unsupervised ASR performance.


Findings of the 2023 ML-SUPERB Challenge: Pre-Training and Evaluation over More Languages and Beyond

arXiv.org Artificial Intelligence

The benchmark primarily focuses on evaluating SSL models for automatic speech recognition (ASR) and language identification The 2023 Multilingual Speech Universal Performance Benchmark (LID). To cater to different use cases for SSL models, ML-SUPERB (ML-SUPERB) Challenge expands upon the acclaimed SUPERB includes two tracks with four different tasks: the monolingual framework, emphasizing self-supervised models in multilingual track (monolingual ASR) and the multilingual track (multilingual speech recognition and language identification. The challenge comprises ASR, LID, joint multilingual ASR/LID). Similar to SUPERB, MLa research track focused on applying ML-SUPERB to specific SUPERB utilizes frozen SSL models as feature extractors and multilingual subjects, a Challenge Track for model submissions, employs a lightweight downstream model that can be fine-tuned for and a New Language Track where language resource researchers different tracks to achieve high training efficiency. The released can contribute and evaluate their low-resource language data in the public benchmark of ML-SUPERB covers 143 languages, making it context of the latest progress in multilingual speech recognition.


ML-SUPERB: Multilingual Speech Universal PERformance Benchmark

arXiv.org Artificial Intelligence

Speech processing Universal PERformance Benchmark (SUPERB) is a leaderboard to benchmark the performance of Self-Supervised Learning (SSL) models on various speech processing tasks. However, SUPERB largely considers English speech in its evaluation. This paper presents multilingual SUPERB (ML-SUPERB), covering 143 languages (ranging from high-resource to endangered), and considering both automatic speech recognition and language identification. Following the concept of SUPERB, ML-SUPERB utilizes frozen SSL features and employs a simple framework for multilingual tasks by learning a shallow downstream model. Similar to the SUPERB benchmark, we find speech SSL models can significantly improve performance compared to FBANK features. Furthermore, we find that multilingual models do not always perform better than their monolingual counterparts. We will release ML-SUPERB as a challenge with organized datasets and reproducible training scripts for future multilingual representation research.


Hierarchical Programmatic Reinforcement Learning via Learning to Compose Programs

arXiv.org Artificial Intelligence

Aiming to produce reinforcement learning (RL) policies that are human-interpretable and can generalize better to novel scenarios, Trivedi et al. (2021) present a method (LEAPS) that first learns a program embedding space to continuously parameterize diverse programs from a pre-generated program dataset, and then searches for a task-solving program in the learned program embedding space when given a task. Despite the encouraging results, the program policies that LEAPS can produce are limited by the distribution of the program dataset. Furthermore, during searching, LEAPS evaluates each candidate program solely based on its return, failing to precisely reward correct parts of programs and penalize incorrect parts. To address these issues, we propose to learn a meta-policy that composes a series of programs sampled from the learned program embedding space. By learning to compose programs, our proposed hierarchical programmatic reinforcement learning (HPRL) framework can produce program policies that describe out-of-distributionally complex behaviors and directly assign credits to programs that induce desired behaviors. The experimental results in the Karel domain show that our proposed framework outperforms baselines. The ablation studies confirm the limitations of LEAPS and justify our design choices.