Goto

Collaborating Authors

 Hsu, Chin-Chi


Attribute-aware Collaborative Filtering: Survey and Classification

arXiv.org Machine Learning

Attribute-aware CF models aims at rating prediction given not only the historical rating from users to items, but also the information associated with users (e.g. age), items (e.g. price), or even ratings (e.g. rating time). This paper surveys works in the past decade developing attribute-aware CF systems, and discovered that mathematically they can be classified into four different categories. We provide the readers not only the high level mathematical interpretation of the existing works in this area but also the mathematical insight for each category of models. Finally we provide in-depth experiment results comparing the effectiveness of the major works in each category.


PRUNE: Preserving Proximity and Global Ranking for Network Embedding

Neural Information Processing Systems

We investigate an unsupervised generative approach for network embedding. A multi-task Siamese neural network structure is formulated to connect embedding vectors and our objective to preserve the global node ranking and local proximity of nodes. We provide deeper analysis to connect the proposed proximity objective to link prediction and community detection in the network. We show our model can satisfy the following design properties: scalability, asymmetry, unity and simplicity. Experiment results not only verify the above design properties but also demonstrate the superior performance in learning-to-rank, classification, regression, and link prediction tasks.