Goto

Collaborating Authors

 Howard, R. E.


Handwritten Digit Recognition with a Back-Propagation Network

Neural Information Processing Systems

We present an application of back-propagation networks to handwritten digitrecognition. Minimal preprocessing of the data was required, but architecture of the network was highly constrained and specifically designed for the task. The input of the network consists of normalized images of isolated digits. The method has 1 % error rate and about a 9% reject rate on zipcode digits provided by the U.S. Postal Service. 1 INTRODUCTION The main point of this paper is to show that large back-propagation (BP) networks canbe applied to real image-recognition problems without a large, complex preprocessing stage requiring detailed engineering. Unlike most previous work on the subject (Denker et al., 1989), the learning network is directly fed with images, rather than feature vectors, thus demonstrating the ability of BP networks to deal with large amounts of low level information. Previous work performed on simple digit images (Le Cun, 1989) showed that the architecture of the network strongly influences the network's generalization ability. Good generalization can only be obtained by designing a network architecture that contains a certain amount of a priori knowledge about the problem. The basic design principleis to minimize the number of free parameters that must be determined by the learning algorithm, without overly reducing the computational power of the network.


Handwritten Digit Recognition with a Back-Propagation Network

Neural Information Processing Systems

We present an application of back-propagation networks to handwritten digit recognition. Minimal preprocessing of the data was required, but architecture of the network was highly constrained and specifically designed for the task. The input of the network consists of normalized images of isolated digits. The method has 1 % error rate and about a 9% reject rate on zipcode digits provided by the U.S. Postal Service. 1 INTRODUCTION The main point of this paper is to show that large back-propagation (BP) networks can be applied to real image-recognition problems without a large, complex preprocessing stage requiring detailed engineering. Unlike most previous work on the subject (Denker et al., 1989), the learning network is directly fed with images, rather than feature vectors, thus demonstrating the ability of BP networks to deal with large amounts of low level information. Previous work performed on simple digit images (Le Cun, 1989) showed that the architecture of the network strongly influences the network's generalization ability. Good generalization can only be obtained by designing a network architecture that contains a certain amount of a priori knowledge about the problem. The basic design principle is to minimize the number of free parameters that must be determined by the learning algorithm, without overly reducing the computational power of the network.


Neural Network Recognizer for Hand-Written Zip Code Digits

Neural Information Processing Systems

This paper describes the construction of a system that recognizes hand-printed digits, using a combination of classical techniques and neural-net methods. The system has been trained and tested on real-world data, derived from zip codes seen on actual U.S. Mail. The system rejects a small percentage of the examples as unclassifiable, and achieves a very low error rate on the remaining examples. The system compares favorably with other state-of-the art recognizers. While some of the methods are specific to this task, it is hoped that many of the techniques will be applicable to a wide range of recognition tasks.


Neural Network Recognizer for Hand-Written Zip Code Digits

Neural Information Processing Systems

This paper describes the construction of a system that recognizes hand-printed digits, using a combination of classical techniques and neural-net methods. The system has been trained and tested on real-world data, derived from zip codes seen on actual U.S. Mail. The system rejects a small percentage of the examples as unclassifiable, and achieves a very low error rate on the remaining examples. The system compares favorably with other state-of-the art recognizers. While some of the methods are specific to this task, it is hoped that many of the techniques will be applicable to a wide range of recognition tasks.


Neural Network Recognizer for Hand-Written Zip Code Digits

Neural Information Processing Systems

This paper describes the construction of a system that recognizes hand-printed digits, using a combination of classical techniques and neural-net methods. The system has been trained and tested on real-world data, derived from zip codes seen on actual U.S. Mail. The system rejects a small percentage of the examples as unclassifiable, and achieves a very low error rate on the remaining examples. The system compares favorably with other state-of-the art recognizers. While some of the methods are specific to this task, it is hoped that many of the techniques will be applicable to a wide range of recognition tasks.


Adaptive Neural Networks Using MOS Charge Storage

Neural Information Processing Systems

However, to achieve the full power of a VLSI implementation of an adaptive algorithm, the learning operation must built into the circuit. We have fabricated and tested a circuit ideal for this purpose by connecting a pair of capacitors with a CCD like structure, allowing for variable size weight changes as well as a weight decay operation. A 2.51-' CMOS version achieves better than 10 bits of dynamic range in a 140/'


Adaptive Neural Networks Using MOS Charge Storage

Neural Information Processing Systems

However, to achieve the full power of a VLSI implementation of an adaptive algorithm, the learning operation must built into the circuit. We have fabricated and tested a circuit ideal for this purpose by connecting a pair of capacitors with a CCD like structure, allowing for variable size weight changes as well as a weight decay operation. A 2.51-' CMOS version achieves better than 10 bits of dynamic range in a 140/'