Goto

Collaborating Authors

 Houk, James C.


Dopamine Induced Bistability Enhances Signal Processing in Spiny Neurons

Neural Information Processing Systems

Single unit activity in the striatum of awake monkeys shows a marked dependence on the expected reward that a behavior will elicit. We present a computational model of spiny neurons, the principal neurons of the striatum, to assess the hypothesis that direct neuromodulatory effects of dopamine through the activation of D 1 receptors mediate the reward dependency of spiny neuron activity. Dopamine release results in the amplification of key ion currents, leading to the emergence of bistability, which not only modulates the peak firing rate but also introduces a temporal and state dependence of the model's response, thus improving the detectability of temporally correlated inputs. 1 Introduction The classic notion of the basal ganglia as being involved in purely motor processing has expanded over the years to include sensory and cognitive functions. A surprising new finding is that much of this activity shows a motivational component. For instance, striatal activity related to visual stimuli is dependent on the type of reinforcement (primary vs secondary) that a behavior will elicit [1].


Dopamine Induced Bistability Enhances Signal Processing in Spiny Neurons

Neural Information Processing Systems

Single unit activity in the striatum of awake monkeys shows a marked dependence on the expected reward that a behavior will elicit. We present a computational model of spiny neurons, the principal neurons of the striatum, to assess the hypothesis that direct neuromodulatoryeffects of dopamine through the activation of D1 receptors mediate the reward dependency of spiny neuron activity. Dopamine release results in the amplification of key ion currents, leading to the emergence of bistability, which not only modulates the peak firing rate but also introduces a temporal and state dependence of the model's response, thus improving the detectability oftemporally correlated inputs. 1 Introduction The classic notion of the basal ganglia as being involved in purely motor processing has expanded over the years to include sensory and cognitive functions. A surprising newfinding is that much of this activity shows a motivational component. For instance, striatal activity related to visual stimuli is dependent on the type of reinforcement (primary vs secondary) that a behavior will elicit [1].


A Predictive Switching Model of Cerebellar Movement Control

Neural Information Processing Systems

The existence of significant delays in sensorimotor feedback pathways has led several researchers to suggest that the cerebellum might function as a forward model of the motor plant in order to predict the sensory consequences of motor commands before actual feedback is available; e.g., (Ito, 1984; Keeler, 1990; Miall et ai., 1993). While we agree that there are many potential roles for forward models in motor control systems, as discussed, e.g., in (Wolpert et al., 1995), we present a hypothesis about how the cerebellum could participate in regulating movement in the presence of significant feedback delays without resorting to a forward model. We show how a very simplified version of the adjustable pattern generator (APG) model being developed by Houk and colleagues (Berthier et al., 1993; Houk et al., 1995) can learn to control endpoint positioning of a nonlinear spring-mass system with significant delays in both afferent and efferent pathways. Although much simpler than a multilink dynamic arm, control of this spring-mass system involves some of the challenges critical in the control of a more realistic motor system and serves to illustrate the principles we propose. Preliminary results appear in (Buckingham et al., 1995).


A Predictive Switching Model of Cerebellar Movement Control

Neural Information Processing Systems

The existence of significant delays in sensorimotor feedback pathways has led several researchers to suggest that the cerebellum might function as a forward model of the motor plant in order to predict the sensory consequences of motor commands before actual feedback is available; e.g., (Ito, 1984; Keeler, 1990; Miall et ai., 1993). While we agree that there are many potential roles for forward models in motor control systems, as discussed, e.g., in (Wolpert et al., 1995), we present a hypothesis about how the cerebellum could participate in regulating movement in the presence of significant feedbackdelays without resorting to a forward model. We show how a very simplified version of the adjustable pattern generator (APG) model being developed by Houk and colleagues (Berthier et al., 1993; Houk et al., 1995) can learn to control endpointpositioning of a nonlinear spring-mass system with significant delays in both afferent and efferent pathways. Although much simpler than a multilink dynamic arm, control of this spring-mass system involves some of the challenges critical in the control of a more realistic motor system and serves to illustrate the principles we propose. Preliminary results appear in (Buckingham et al., 1995).


Schema for Motor Control Utilizing a Network Model of the Cerebellum

Neural Information Processing Systems

Asa means of probing these cerebellar mechanisms, my colleagues and I have been conducting microelectrode studies of the neural messages that flow through the intermediate divisionof the cerebellum and onward to limb muscles via the rubrospinal tract. We regard this cerebellorubrospinal pathwayas a useful model system for studying general problems of sensorimotor integration and adaptive brain function.