Goto

Collaborating Authors

 Hou, Yi


An Integrated Artificial Intelligence Operating System for Advanced Low-Altitude Aviation Applications

arXiv.org Artificial Intelligence

This paper introduces a high-performance artificial intelligence operating system tailored for low-altitude aviation, designed to address key challenges such as real-time task execution, computational efficiency, and seamless modular collaboration. Built on a powerful hardware platform and leveraging the UNIX architecture, the system implements a distributed data processing strategy that ensures rapid and efficient synchronization across critical modules, including vision, navigation, and perception. By adopting dynamic resource management, it optimally allocates computational resources, such as CPU and GPU, based on task priority and workload, ensuring high performance for demanding tasks like real-time video processing and AI model inference. Furthermore, the system features an advanced interrupt handling mechanism that allows for quick responses to sudden environmental changes, such as obstacle detection, by prioritizing critical tasks, thus improving safety and mission success rates. Robust security measures, including data encryption, access control, and fault tolerance, ensure the system's resilience against external threats and its ability to recover from potential hardware or software failures. Complementing these core features are modular components for image analysis, multi-sensor fusion, dynamic path planning, multi-drone coordination, and ground station monitoring. Additionally, a low-code development platform simplifies user customization, making the system adaptable to various mission-specific needs. This comprehensive approach ensures the system meets the evolving demands of intelligent aviation, providing a stable, efficient, and secure environment for complex drone operations.


VoroNav: Voronoi-based Zero-shot Object Navigation with Large Language Model

arXiv.org Artificial Intelligence

In the realm of household robotics, the Zero-Shot Object Navigation (ZSON) task empowers agents to adeptly traverse unfamiliar environments and locate objects from novel categories without prior explicit training. This paper introduces VoroNav, a novel semantic exploration framework that proposes the Reduced Voronoi Graph to extract exploratory paths and planning nodes from a semantic map constructed in real time. By harnessing topological and semantic information, VoroNav designs text-based descriptions of paths and images that are readily interpretable by a large language model (LLM). In particular, our approach presents a synergy of path and farsight descriptions to represent the environmental context, enabling LLM to apply commonsense reasoning to ascertain waypoints for navigation. Extensive evaluation on HM3D and HSSD validates VoroNav surpasses existing benchmarks in both success rate and exploration efficiency (absolute improvement: +2.8% Success and +3.7% SPL on HM3D, +2.6% Success and +3.8% SPL on HSSD). Additionally introduced metrics that evaluate obstacle avoidance proficiency and perceptual efficiency further corroborate the enhancements achieved by our method in ZSON planning. Project page: https://voro-nav.github.io


BBA-net: A bi-branch attention network for crowd counting

arXiv.org Artificial Intelligence

In the field of crowd counting, the current mainstream CNN-based regression methods simply extract the density information of pedestrians without finding the position of each person. This makes the output of the network often found to contain incorrect responses, which may erroneously estimate the total number and not conducive to the interpretation of the algorithm. To this end, we propose a Bi-Branch Attention Network (BBA-NET) for crowd counting, which has three innovation points. i) A two-branch architecture is used to estimate the density information and location information separately. ii) Attention mechanism is used to facilitate feature extraction, which can reduce false responses. iii) A new density map generation method combining geometric adaptation and Voronoi split is introduced. Our method can integrate the pedestrian's head and body information to enhance the feature expression ability of the density map. Extensive experiments performed on two public datasets show that our method achieves a lower crowd counting error compared to other state-of-the-art methods.


Decentralized Cooperative Lane Changing at Freeway Weaving Areas Using Multi-Agent Deep Reinforcement Learning

arXiv.org Artificial Intelligence

Frequent lane changes during congestion at freeway bottlenecks such as merge and weaving areas further reduce roadway capacity. The emergence of deep reinforcement learning (RL) and connected and automated vehicle technology provides a possible solution to improve mobility and energy efficiency at freeway bottlenecks through cooperative lane changing. Deep RL is a collection of machine-learning methods that enables an agent to improve its performance by learning from the environment. In this study, a decentralized cooperative lane-changing controller was developed using proximal policy optimization by adopting a multi-agent deep RL paradigm. In the decentralized control strategy, policy learning and action reward are evaluated locally, with each agent (vehicle) getting access to global state information. Multi-agent deep RL requires lower computational resources and is more scalable than single-agent deep RL, making it a powerful tool for time-sensitive applications such as cooperative lane changing. The results of this study show that cooperative lane changing enabled by multi-agent deep RL yields superior performance to human drivers in term of traffic throughput, vehicle speed, number of stops per vehicle, vehicle fuel efficiency, and emissions. The trained RL policy is transferable and can be generalized to uncongested, moderately congested, and extremely congested traffic conditions.


A Modular and Transferable Reinforcement Learning Framework for the Fleet Rebalancing Problem

arXiv.org Artificial Intelligence

Mobility on demand (MoD) systems show great promise in realizing flexible and efficient urban transportation. However, significant technical challenges arise from operational decision making associated with MoD vehicle dispatch and fleet rebalancing. For this reason, operators tend to employ simplified algorithms that have been demonstrated to work well in a particular setting. To help bridge the gap between novel and existing methods, we propose a modular framework for fleet rebalancing based on model-free reinforcement learning (RL) that can leverage an existing dispatch method to minimize system cost. In particular, by treating dispatch as part of the environment dynamics, a centralized agent can learn to intermittently direct the dispatcher to reposition free vehicles and mitigate against fleet imbalance. We formulate RL state and action spaces as distributions over a grid partitioning of the operating area, making the framework scalable and avoiding the complexities associated with multiagent RL. Numerical experiments, using real-world trip and network data, demonstrate that this approach has several distinct advantages over baseline methods including: improved system cost; high degree of adaptability to the selected dispatch method; and the ability to perform scale-invariant transfer learning between problem instances with similar vehicle and request distributions.