Goto

Collaborating Authors

 Hou, Yanxi


Combining Structural and Unstructured Data: A Topic-based Finite Mixture Model for Insurance Claim Prediction

arXiv.org Artificial Intelligence

Modeling insurance claim amounts and classifying claims into different risk levels are critical yet challenging tasks. Traditional predictive models for insurance claims often overlook the valuable information embedded in claim descriptions. This paper introduces a novel approach by developing a joint mixture model that integrates both claim descriptions and claim amounts. Our method establishes a probabilistic link between textual descriptions and loss amounts, enhancing the accuracy of claims clustering and prediction. In our proposed model, the latent topic/component indicator serves as a proxy for both the thematic content of the claim description and the component of loss distributions. Specifically, conditioned on the topic/component indicator, the claim description follows a multinomial distribution, while the claim amount follows a component loss distribution. We propose two methods for model calibration: an EM algorithm for maximum a posteriori estimates, and an MH-within-Gibbs sampler algorithm for the posterior distribution. The empirical study demonstrates that the proposed methods work effectively, providing interpretable claims clustering and prediction.


Learning to Simulate: Generative Metamodeling via Quantile Regression

arXiv.org Artificial Intelligence

Stochastic simulation models, while effective in capturing the dynamics of complex systems, are often too slow to run for real-time decision-making. Metamodeling techniques are widely used to learn the relationship between a summary statistic of the outputs (e.g., the mean or quantile) and the inputs of the simulator, so that it can be used in real time. However, this methodology requires the knowledge of an appropriate summary statistic in advance, making it inflexible for many practical situations. In this paper, we propose a new metamodeling concept, called generative metamodeling, which aims to construct a "fast simulator of the simulator". This technique can generate random outputs substantially faster than the original simulation model, while retaining an approximately equal conditional distribution given the same inputs. Once constructed, a generative metamodel can instantaneously generate a large amount of random outputs as soon as the inputs are specified, thereby facilitating the immediate computation of any summary statistic for real-time decision-making. Furthermore, we propose a new algorithm -- quantile-regression-based generative metamodeling (QRGMM) -- and study its convergence and rate of convergence. Extensive numerical experiments are conducted to investigate the empirical performance of QRGMM, compare it with other state-of-the-art generative algorithms, and demonstrate its usefulness in practical real-time decision-making.