Goto

Collaborating Authors

 Hou, Yang


Double Landmines: Invisible Textual Backdoor Attacks based on Dual-Trigger

arXiv.org Artificial Intelligence

At present, all textual backdoor attack methods are based on single triggers: for example, inserting specific content into the text to activate the backdoor; or changing the abstract text features. The former is easier to be identified by existing defense strategies due to its obvious characteristics; the latter, although improved in invisibility, has certain shortcomings in terms of attack performance, construction of poisoned datasets, and selection of the final poisoning rate. On this basis, this paper innovatively proposes a Dual-Trigger backdoor attack based on syntax and mood, and optimizes the construction of the poisoned dataset and the selection strategy of the final poisoning rate. A large number of experimental results show that this method significantly outperforms the previous methods based on abstract features in attack performance, and achieves comparable attack performance (almost 100% attack success rate) with the insertion-based method. In addition, the two trigger mechanisms included in this method can be activated independently in the application phase of the model, which not only improves the flexibility of the trigger style, but also enhances its robustness against defense strategies. These results profoundly reveal that textual backdoor attacks are extremely harmful and provide a new perspective for security protection in this field.


Mining Word Boundaries from Speech-Text Parallel Data for Cross-domain Chinese Word Segmentation

arXiv.org Artificial Intelligence

Inspired by early research on exploring naturally annotated data for Chinese Word Segmentation (CWS), and also by recent research on integration of speech and text processing, this work for the first time proposes to explicitly mine word boundaries from speech-text parallel data. We employ the Montreal Forced Aligner (MFA) toolkit to perform character-level alignment on speech-text data, giving pauses as candidate word boundaries. Based on detailed analysis of collected pauses, we propose an effective probability-based strategy for filtering unreliable word boundaries. To more effectively utilize word boundaries as extra training data, we also propose a robust complete-then-train (CTT) strategy. We conduct cross-domain CWS experiments on two target domains, i.e., ZX and AISHELL2. We have annotated about 1,000 sentences as the evaluation data of AISHELL2. Experiments demonstrate the effectiveness of our proposed approach.


Character-Level Chinese Dependency Parsing via Modeling Latent Intra-Word Structure

arXiv.org Artificial Intelligence

Revealing the syntactic structure of sentences in Chinese poses significant challenges for word-level parsers due to the absence of clear word boundaries. To facilitate a transition from word-level to character-level Chinese dependency parsing, this paper proposes modeling latent internal structures within words. In this way, each word-level dependency tree is interpreted as a forest of character-level trees. A constrained Eisner algorithm is implemented to ensure the compatibility of character-level trees, guaranteeing a single root for intra-word structures and establishing inter-word dependencies between these roots. Experiments on Chinese treebanks demonstrate the superiority of our method over both the pipeline framework and previous joint models. A detailed analysis reveals that a coarse-to-fine parsing strategy empowers the model to predict more linguistically plausible intra-word structures.


PolyGlotFake: A Novel Multilingual and Multimodal DeepFake Dataset

arXiv.org Artificial Intelligence

With the rapid advancement of generative AI, multimodal deepfakes, which manipulate both audio and visual modalities, have drawn increasing public concern. Currently, deepfake detection has emerged as a crucial strategy in countering these growing threats. However, as a key factor in training and validating deepfake detectors, most existing deepfake datasets primarily focus on the visual modal, and the few that are multimodal employ outdated techniques, and their audio content is limited to a single language, thereby failing to represent the cutting-edge advancements and globalization trends in current deepfake technologies. To address this gap, we propose a novel, multilingual, and multimodal deepfake dataset: PolyGlotFake. It includes content in seven languages, created using a variety of cutting-edge and popular Text-to-Speech, voice cloning, and lip-sync technologies. We conduct comprehensive experiments using state-of-the-art detection methods on PolyGlotFake dataset. These experiments demonstrate the dataset's significant challenges and its practical value in advancing research into multimodal deepfake detection.


Is It Really Useful to Jointly Parse Constituency and Dependency Trees? A Revisit

arXiv.org Artificial Intelligence

This work visits the topic of jointly parsing constituency and dependency trees, i.e., to produce compatible constituency and dependency trees simultaneously for input sentences, which is attractive considering that the two types of trees are complementary in representing syntax. Compared with previous works, we make progress in four aspects: (1) adopting a much more efficient decoding algorithm, (2) exploring joint modeling at the training phase, instead of only at the inference phase, (3) proposing high-order scoring components for constituent-dependency interaction, (4) gaining more insights via in-depth experiments and analysis.