Hou, Mingliang
Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach
Chen, Xin, Hou, Mingliang, Tang, Tao, Kaur, Achhardeep, Xia, Feng
With the arrival of the big data era, mobility profiling has become a viable method of utilizing enormous amounts of mobility data to create an intelligent transportation system. Mobility profiling can extract potential patterns in urban traffic from mobility data and is critical for a variety of traffic-related applications. However, due to the high level of complexity and the huge amount of data, mobility profiling faces huge challenges. Digital Twin (DT) technology paves the way for cost-effective and performance-optimised management by digitally creating a virtual representation of the network to simulate its behaviour. In order to capture the complex spatio-temporal features in traffic scenario, we construct alignment diagrams to assist in completing the spatio-temporal correlation representation and design dilated alignment convolution network (DACN) to learn the fine-grained correlations, i.e., spatio-temporal interactions. We propose a digital twin mobility profiling (DTMP) framework to learn node profiles on a mobility network DT model. Extensive experiments have been conducted upon three real-world datasets. Experimental results demonstrate the effectiveness of DTMP.
Coupled Attention Networks for Multivariate Time Series Anomaly Detection
Xia, Feng, Chen, Xin, Yu, Shuo, Hou, Mingliang, Liu, Mujie, You, Linlin
Multivariate time series anomaly detection (MTAD) plays a vital role in a wide variety of real-world application domains. Over the past few years, MTAD has attracted rapidly increasing attention from both academia and industry. Many deep learning and graph learning models have been developed for effective anomaly detection in multivariate time series data, which enable advanced applications such as smart surveillance and risk management with unprecedented capabilities. Nevertheless, MTAD is facing critical challenges deriving from the dependencies among sensors and variables, which often change over time. To address this issue, we propose a coupled attention-based neural network framework (CAN) for anomaly detection in multivariate time series data featuring dynamic variable relationships. We combine adaptive graph learning methods with graph attention to generate a global-local graph that can represent both global correlations and dynamic local correlations among sensors. To capture inter-sensor relationships and temporal dependencies, a convolutional neural network based on the global-local graph is integrated with a temporal self-attention module to construct a coupled attention module. In addition, we develop a multilevel encoder-decoder architecture that accommodates reconstruction and prediction tasks to better characterize multivariate time series data. Extensive experiments on real-world datasets have been conducted to evaluate the performance of the proposed CAN approach, and the results show that CAN significantly outperforms state-of-the-art baselines.