Goto

Collaborating Authors

 Hosseinmardi, Homa


Stacking Models for Nearly Optimal Link Prediction in Complex Networks

arXiv.org Machine Learning

Most real-world networks are incompletely observed. Algorithms that can accurately predict which links are missing can dramatically speedup the collection of network data and improve the validity of network models. Many algorithms now exist for predicting missing links, given a partially observed network, but it has remained unknown whether a single best predictor exists, how link predictability varies across methods and networks from different domains, and how close to optimality current methods are. We answer these questions by systematically evaluating 203 individual link predictor algorithms, representing three popular families of methods, applied to a large corpus of 548 structurally diverse networks from six scientific domains. We first show that individual algorithms exhibit a broad diversity of prediction errors, such that no one predictor or family is best, or worst, across all realistic inputs. We then exploit this diversity via meta-learning to construct a series of "stacked" models that combine predictors into a single algorithm. Applied to a broad range of synthetic networks, for which we may analytically calculate optimal performance, these stacked models achieve optimal or nearly optimal levels of accuracy. Applied to real-world networks, stacked models are also superior, but their accuracy varies strongly by domain, suggesting that link prediction may be fundamentally easier in social networks than in biological or technological networks. These results indicate that the state-of-the-art for link prediction comes from combining individual algorithms, which achieves nearly optimal predictions. We close with a brief discussion of limitations and opportunities for further improvement of these results.


Discovering Hidden Structure in High Dimensional Human Behavioral Data via Tensor Factorization

arXiv.org Machine Learning

In recent years, the rapid growth in technology has increased the opportunity for longitudinal human behavioral studies. Rich multimodal data, from wearables like Fitbit, online social networks, mobile phones etc. can be collected in natural environments. Uncovering the underlying low-dimensional structure of noisy multi-way data in an unsupervised setting is a challenging problem. Tensor factorization has been successful in extracting the interconnected low-dimensional descriptions of multi-way data. In this paper, we apply non-negative tensor factorization on a real-word wearable sensor data, StudentLife, to find latent temporal factors and group of similar individuals. Meta data is available for the semester schedule, as well as the individuals' performance and personality. We demonstrate that non-negative tensor factorization can successfully discover clusters of individuals who exhibit higher academic performance, as well as those who frequently engage in leisure activities. The recovered latent temporal patterns associated with these groups are validated against ground truth data to demonstrate the accuracy of our framework.


Evaluating Overfit and Underfit in Models of Network Community Structure

arXiv.org Machine Learning

A common data mining task on networks is community detection, which seeks an unsupervised decomposition of a network into structural groups based on statistical regularities in the network's connectivity. Although many methods exist, the No Free Lunch theorem for community detection implies that each makes some kind of tradeoff, and no algorithm can be optimal on all inputs. Thus, different algorithms will over or underfit on different inputs, finding more, fewer, or just different communities than is optimal, and evaluation methods that use a metadata partition as a ground truth will produce misleading conclusions about general accuracy. Here, we present a broad evaluation of over and underfitting in community detection, comparing the behavior of 16 state-of-the-art community detection algorithms on a novel and structurally diverse corpus of 406 real-world networks. We find that (i) algorithms vary widely both in the number of communities they find and in their corresponding composition, given the same input, (ii) algorithms can be clustered into distinct high-level groups based on similarities of their outputs on real-world networks, and (iii) these differences induce wide variation in accuracy on link prediction and link description tasks. We introduce a new diagnostic for evaluating overfitting and underfitting in practice, and use it to roughly divide community detection methods into general and specialized learning algorithms. Across methods and inputs, Bayesian techniques based on the stochastic block model and a minimum description length approach to regularization represent the best general learning approach, but can be outperformed under specific circumstances. These results introduce both a theoretically principled approach to evaluate over and underfitting in models of network community structure and a realistic benchmark by which new methods may be evaluated and compared.