Hosseini, Pedram
A Benchmark for Long-Form Medical Question Answering
Hosseini, Pedram, Sin, Jessica M., Ren, Bing, Thomas, Bryceton G., Nouri, Elnaz, Farahanchi, Ali, Hassanpour, Saeed
There is a lack of benchmarks for evaluating large language models (LLMs) in long-form medical question answering (QA). Most existing medical QA evaluation benchmarks focus on automatic metrics and multiple-choice questions. While valuable, these benchmarks fail to fully capture or assess the complexities of real-world clinical applications where LLMs are being deployed. Furthermore, existing studies on evaluating long-form answer generation in medical QA are primarily closed-source, lacking access to human medical expert annotations, which makes it difficult to reproduce results and enhance existing baselines. In this work, we introduce a new publicly available benchmark featuring real-world consumer medical questions with long-form answer evaluations annotated by medical doctors. We performed pairwise comparisons of responses from various open and closed-source medical and general-purpose LLMs based on criteria such as correctness, helpfulness, harmfulness, and bias. Additionally, we performed a comprehensive LLM-as-a-judge analysis to study the alignment between human judgments and LLMs. Our preliminary results highlight the strong potential of open LLMs in medical QA compared to leading closed models. Code & Data: https://github.com/lavita-ai/medical-eval-sphere
Predicting Directionality in Causal Relations in Text
Hosseini, Pedram, Broniatowski, David A., Diab, Mona
In this work, we test the performance of two bidirectional transformer-based language models, BERT and SpanBERT, on predicting directionality in causal pairs in the textual content. Our preliminary results show that predicting direction for inter-sentence and implicit causal relations is more challenging. And, SpanBERT performs better than BERT on causal samples with longer span length. We also introduce CREST which is a framework for unifying a collection of scattered datasets of causal relations.
ParsiNLU: A Suite of Language Understanding Challenges for Persian
Khashabi, Daniel, Cohan, Arman, Shakeri, Siamak, Hosseini, Pedram, Pezeshkpour, Pouya, Alikhani, Malihe, Aminnaseri, Moin, Bitaab, Marzieh, Brahman, Faeze, Ghazarian, Sarik, Gheini, Mozhdeh, Kabiri, Arman, Mahabadi, Rabeeh Karimi, Memarrast, Omid, Mosallanezhad, Ahmadreza, Noury, Erfan, Raji, Shahab, Rasooli, Mohammad Sadegh, Sadeghi, Sepideh, Azer, Erfan Sadeqi, Samghabadi, Niloofar Safi, Shafaei, Mahsa, Sheybani, Saber, Tazarv, Ali, Yaghoobzadeh, Yadollah
Despite the progress made in recent years in addressing natural language understanding (NLU) challenges, the majority of this progress remains to be concentrated on resource-rich languages like English. This work focuses on Persian language, one of the widely spoken languages in the world, and yet there are few NLU datasets available for this rich language. The availability of high-quality evaluation datasets is a necessity for reliable assessment of the progress on different NLU tasks and domains. We introduce ParsiNLU, the first benchmark in Persian language that includes a range of high-level tasks -- Reading Comprehension, Textual Entailment, etc. These datasets are collected in a multitude of ways, often involving manual annotations by native speakers. This results in over 14.5$k$ new instances across 6 distinct NLU tasks. Besides, we present the first results on state-of-the-art monolingual and multi-lingual pre-trained language-models on this benchmark and compare them with human performance, which provides valuable insights into our ability to tackle natural language understanding challenges in Persian. We hope ParsiNLU fosters further research and advances in Persian language understanding.
A Multi-Modal Method for Satire Detection using Textual and Visual Cues
Li, Lily, Levi, Or, Hosseini, Pedram, Broniatowski, David A.
Satire is a form of humorous critique, but it is sometimes misinterpreted by readers as legitimate news, which can lead to harmful consequences. We observe that the images used in satirical news articles often contain absurd or ridiculous content and that image manipulation is used to create fictional scenarios. While previous work have studied text-based methods, in this work we propose a multi-modal approach based on state-of-the-art visiolinguistic model ViLBERT. To this end, we create a new dataset consisting of images and headlines of regular and satirical news for the task of satire detection. We fine-tune ViLBERT on the dataset and train a convolutional neural network that uses an image forensics technique. Evaluation on the dataset shows that our proposed multi-modal approach outperforms image-only, text-only, and simple fusion baselines.