Hosseini, Lucas
The Faiss library
Douze, Matthijs, Guzhva, Alexandr, Deng, Chengqi, Johnson, Jeff, Szilvasy, Gergely, Mazaré, Pierre-Emmanuel, Lomeli, Maria, Hosseini, Lucas, Jégou, Hervé
Vector databases manage large collections of embedding vectors. As AI applications are growing rapidly, so are the number of embeddings that need to be stored and indexed. The Faiss library is dedicated to vector similarity search, a core functionality of vector databases. Faiss is a toolkit of indexing methods and related primitives used to search, cluster, compress and transform vectors. This paper first describes the tradeoff space of vector search, then the design principles of Faiss in terms of structure, approach to optimization and interfacing. We benchmark key features of the library and discuss a few selected applications to highlight its broad applicability.
Atlas: Few-shot Learning with Retrieval Augmented Language Models
Izacard, Gautier, Lewis, Patrick, Lomeli, Maria, Hosseini, Lucas, Petroni, Fabio, Schick, Timo, Dwivedi-Yu, Jane, Joulin, Armand, Riedel, Sebastian, Grave, Edouard
Large language models have shown impressive few-shot results on a wide range of tasks. However, when knowledge is key for such results, as is the case for tasks such as question answering and fact checking, massive parameter counts to store knowledge seem to be needed. Retrieval augmented models are known to excel at knowledge intensive tasks without the need for as many parameters, but it is unclear whether they work in few-shot settings. In this work we present Atlas, a carefully designed and pre-trained retrieval augmented language model able to learn knowledge intensive tasks with very few training examples. We perform evaluations on a wide range of tasks, including MMLU, KILT and NaturalQuestions, and study the impact of the content of the document index, showing that it can easily be updated. Notably, Atlas reaches over 42% accuracy on Natural Questions using only 64 examples, outperforming a 540B parameters model by 3% despite having 50x fewer parameters.
Towards Unsupervised Dense Information Retrieval with Contrastive Learning
Izacard, Gautier, Caron, Mathilde, Hosseini, Lucas, Riedel, Sebastian, Bojanowski, Piotr, Joulin, Armand, Grave, Edouard
Information retrieval is an important component in natural language processing, for knowledge intensive tasks such as question answering and fact checking. Recently, information retrieval has seen the emergence of dense retrievers, based on neural networks, as an alternative to classical sparse methods based on term-frequency. These models have obtained state-of-the-art results on datasets and tasks where large training sets are available. However, they do not transfer well to new domains or applications with no training data, and are often outperformed by term-frequency methods such as BM25 which are not supervised. Thus, a natural question is whether it is possible to train dense retrievers without supervision. In this work, we explore the limits of contrastive learning as a way to train unsupervised dense retrievers, and show that it leads to strong retrieval performance. More precisely, we show on the BEIR benchmark that our model outperforms BM25 on 11 out of 15 datasets. Furthermore, when a few thousands examples are available, we show that fine-tuning our model on these leads to strong improvements compared to BM25. Finally, when used as pre-training before fine-tuning on the MS-MARCO dataset, our technique obtains state-of-the-art results on the BEIR benchmark.
NeurIPS 2020 EfficientQA Competition: Systems, Analyses and Lessons Learned
Min, Sewon, Boyd-Graber, Jordan, Alberti, Chris, Chen, Danqi, Choi, Eunsol, Collins, Michael, Guu, Kelvin, Hajishirzi, Hannaneh, Lee, Kenton, Palomaki, Jennimaria, Raffel, Colin, Roberts, Adam, Kwiatkowski, Tom, Lewis, Patrick, Wu, Yuxiang, Küttler, Heinrich, Liu, Linqing, Minervini, Pasquale, Stenetorp, Pontus, Riedel, Sebastian, Yang, Sohee, Seo, Minjoon, Izacard, Gautier, Petroni, Fabio, Hosseini, Lucas, De Cao, Nicola, Grave, Edouard, Yamada, Ikuya, Shimaoka, Sonse, Suzuki, Masatoshi, Miyawaki, Shumpei, Sato, Shun, Takahashi, Ryo, Suzuki, Jun, Fajcik, Martin, Docekal, Martin, Ondrej, Karel, Smrz, Pavel, Cheng, Hao, Shen, Yelong, Liu, Xiaodong, He, Pengcheng, Chen, Weizhu, Gao, Jianfeng, Oguz, Barlas, Chen, Xilun, Karpukhin, Vladimir, Peshterliev, Stan, Okhonko, Dmytro, Schlichtkrull, Michael, Gupta, Sonal, Mehdad, Yashar, Yih, Wen-tau
We review the EfficientQA competition from NeurIPS 2020. The competition focused on open-domain question answering (QA), where systems take natural language questions as input and return natural language answers. The aim of the competition was to build systems that can predict correct answers while also satisfying strict on-disk memory budgets. These memory budgets were designed to encourage contestants to explore the trade-off between storing large, redundant, retrieval corpora or the parameters of large learned models. In this report, we describe the motivation and organization of the competition, review the best submissions, and analyze system predictions to inform a discussion of evaluation for open-domain QA.