Hossain, Jakir
Large Engagement Networks for Classifying Coordinated Campaigns and Organic Twitter Trends
Gopalakrishnan, Atul Anand, Hossain, Jakir, Elmas, Tugrulcan, Sariyuce, Ahmet Erdem
Social media users and inauthentic accounts, such as bots, may coordinate in promoting their topics. Such topics may give the impression that they are organically popular among the public, even though they are astroturfing campaigns that are centrally managed. It is challenging to predict if a topic is organic or a coordinated campaign due to the lack of reliable ground truth. In this paper, we create such ground truth by detecting the campaigns promoted by ephemeral astroturfing attacks. These attacks push any topic to Twitter's (X) trends list by employing bots that tweet in a coordinated manner in a short period and then immediately delete their tweets. We manually curate a dataset of organic Twitter trends. We then create engagement networks out of these datasets which can serve as a challenging testbed for graph classification task to distinguish between campaigns and organic trends. Engagement networks consist of users as nodes and engagements as edges (retweets, replies, and quotes) between users. We release the engagement networks for 179 campaigns and 135 non-campaigns, and also provide finer-grain labels to characterize the type of the campaigns and non-campaigns. Our dataset, LEN (Large Engagement Networks), is available in the URL below. In comparison to traditional graph classification datasets, which are small with tens of nodes and hundreds of edges at most, graphs in LEN are larger. The average graph in LEN has ~11K nodes and ~23K edges. We show that state-of-the-art GNN methods give only mediocre results for campaign vs. non-campaign and campaign type classification on LEN. LEN offers a unique and challenging playfield for the graph classification problem. We believe that LEN will help advance the frontiers of graph classification techniques on large networks and also provide an interesting use case in terms of distinguishing coordinated campaigns and organic trends.
Quantifying Node-based Core Resilience
Hossain, Jakir, Soundarajan, Sucheta, Sarıyüce, Ahmet Erdem
Core decomposition is an efficient building block for various graph analysis tasks such as dense subgraph discovery and identifying influential nodes. One crucial weakness of the core decomposition is its sensitivity to changes in the graph: inserting or removing a few edges can drastically change the core structure of a graph. Hence, it is essential to characterize, quantify, and, if possible, improve the resilience of the core structure of a given graph in global and local levels. Previous works mostly considered the core resilience of the entire graph or important subgraphs in it. In this work, we study node-based core resilience measures upon edge removals and insertions. We first show that a previously proposed measure, Core Strength, does not correctly capture the core resilience of a node upon edge removals. Next, we introduce the concept of dependency graph to capture the impact of neighbor nodes (for edge removal) and probable future neighbor nodes (for edge insertion) on the core number of a given node. Accordingly, we define Removal Strength and Insertion Strength measures to capture the resilience of an individual node upon removing and inserting an edge, respectively. As naive computation of those measures is costly, we provide efficient heuristics built on key observations about the core structure. We consider two key applications, finding critical edges and identifying influential spreaders, to demonstrate the usefulness of our new measures on various real-world networks and against several baselines. We also show that our heuristic algorithms are more efficient than the naive approaches.