Goto

Collaborating Authors

 Hoseinzade, Ehsan


Mamba Meets Financial Markets: A Graph-Mamba Approach for Stock Price Prediction

arXiv.org Artificial Intelligence

Stock markets play an important role in the global economy, where accurate stock price predictions can lead to significant financial returns. While existing transformer-based models have outperformed long short-term memory networks and convolutional neural networks in financial time series prediction, their high computational complexity and memory requirements limit their practicality for real-time trading and long-sequence data processing. To address these challenges, we propose SAMBA, an innovative framework for stock return prediction that builds on the Mamba architecture and integrates graph neural networks. SAMBA achieves near-linear computational complexity by utilizing a bidirectional Mamba block to capture long-term dependencies in historical price data and employing adaptive graph convolution to model dependencies between daily stock features. Our experimental results demonstrate that SAMBA significantly outperforms state-of-the-art baseline models in prediction accuracy, maintaining low computational complexity. The code and datasets are available at github.com/Ali-Meh619/SAMBA.


Graph Neural Network Approach to Semantic Type Detection in Tables

arXiv.org Artificial Intelligence

This study addresses the challenge of detecting semantic column types in relational tables, a key task in many real-world applications. While language models like BERT have improved prediction accuracy, their token input constraints limit the simultaneous processing of intra-table and inter-table information. We propose a novel approach using Graph Neural Networks (GNNs) to model intra-table dependencies, allowing language models to focus on inter-table information. Our proposed method not only outperforms existing state-of-the-art algorithms but also offers novel insights into the utility and functionality of various GNN types for semantic type detection.


CNNPred: CNN-based stock market prediction using several data sources

arXiv.org Machine Learning

Feature extraction from financial data is one of the most important problems in market prediction domain for which many approaches have been suggested. Among other modern tools, convolutional neural networks (CNN) have recently been applied for automatic feature selection and market prediction. However, in experiments reported so far, less attention has been paid to the correlation among different markets as a possible source of information for extracting features. In this paper, we suggest a CNN-based framework with specially designed CNNs, that can be applied on a collection of data from a variety of sources, including different markets, in order to extract features for predicting the future of those markets. The suggested framework has been applied for predicting the next day's direction of movement for the indices of S&P 500, NASDAQ, DJI, NYSE, and RUSSELL markets based on various sets of initial features. The evaluations show a significant improvement in prediction's performance compared to the state of the art baseline algorithms.