Goto

Collaborating Authors

 Horwood, Graham


DoPAMine: Domain-specific Pre-training Adaptation from seed-guided data Mining

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have shown remarkable ability to generalize effectively across numerous industry domains while executing a range of tasks. Many of these competencies are obtained from the data utilized during the pre-training phase of the Language Models (LMs). However, these models exhibit limitations when tasked with performing in specialized or low-resource industry domains. More recent approaches use LLMs for generating domain-specific synthetic data but most often they lack in truthfulness and complexity. Alternatively, in cases where domain data is available like healthcare and finance most of the LMs are proprietary necessitating the need for a scalable method to curate real world industry specific pre-training data. In this work, we propose an automated and scalable framework - DoPAMine:Domain-specific Pre-training Adaptation from seed-guided data Mining, to mine domain specific training data from a large data corpus for domain adaptation of a LM. The framework leverages the parametric knowledge of a LLM to generate diverse and representative seed data tailored to a specific domain which is then used to mine real world data from a large data corpus like Common Crawl. We evaluated our framework's performance in the continual pre-training (CPT) setting by training two domain specific 7B parameter LMs in healthcare and finance with data mined via DoPAMine. Our experiments show that DoPAMine boosts the performance of pre-trained LLMs on average by 4.9% and 5.1% in zero-shot and 5-shot settings respectively on healthcare tasks from MMLU, MedQA, MedMCQA and PubMedQA datasets, and 2.9% and 6.7% for zero-shot and 5-shot settings respectively on finance tasks from FiQA-SA, FPB and Headlines datasets when compared to the baseline.


Active Evaluation Acquisition for Efficient LLM Benchmarking

arXiv.org Artificial Intelligence

As large language models (LLMs) become increasingly versatile, numerous large scale benchmarks have been developed to thoroughly assess their capabilities. These benchmarks typically consist of diverse datasets and prompts to evaluate different aspects of LLM performance. However, comprehensive evaluations on hundreds or thousands of prompts incur tremendous costs in terms of computation, money, and time. In this work, we investigate strategies to improve evaluation efficiency by selecting a subset of examples from each benchmark using a learned policy. Our approach models the dependencies across test examples, allowing accurate prediction of the evaluation outcomes for the remaining examples based on the outcomes of the selected ones. Consequently, we only need to acquire the actual evaluation outcomes for the selected subset. We rigorously explore various subset selection policies and introduce a novel RL-based policy that leverages the captured dependencies. Empirical results demonstrate that our approach significantly reduces the number of evaluation prompts required while maintaining accurate performance estimates compared to previous methods.