Not enough data to create a plot.
Try a different view from the menu above.
Horvitz, Eric J.
Bias Correction of Learned Generative Models using Likelihood-Free Importance Weighting
Grover, Aditya, Song, Jiaming, Kapoor, Ashish, Tran, Kenneth, Agarwal, Alekh, Horvitz, Eric J., Ermon, Stefano
A learned generative model often produces biased statistics relative to the underlying data distribution. A standard technique to correct this bias is importance sampling, where samples from the model are weighted by the likelihood ratio under model and true distributions. When the likelihood ratio is unknown, it can be estimated by training a probabilistic classifier to distinguish samples from the two distributions. We employ this likelihood-free importance weighting method to correct for the bias in generative models. We find that this technique consistently improves standard goodness-of-fit metrics for evaluating the sample quality of state-of-the-art deep generative models, suggesting reduced bias.
Staying up to Date with Online Content Changes Using Reinforcement Learning for Scheduling
Kolobov, Andrey, Peres, Yuval, Lu, Cheng, Horvitz, Eric J.
From traditional Web search engines to virtual assistants and Web accelerators, services that rely on online information need to continually keep track of remote content changes by explicitly requesting content updates from remote sources (e.g., web pages). We propose a novel optimization objective for this setting that has several practically desirable properties, and efficient algorithms for it with optimality guarantees even in the face of mixed content change observability and initially unknown change model parameters. Experiments on 18.5M URLs crawled daily for 14 weeks show significant advantages of this approach over prior art. Papers published at the Neural Information Processing Systems Conference.
Estimating Accuracy from Unlabeled Data: A Probabilistic Logic Approach
Platanios, Emmanouil, Poon, Hoifung, Mitchell, Tom M., Horvitz, Eric J.
We propose an efficient method to estimate the accuracy of classifiers using only unlabeled data. We consider a setting with multiple classification problems where the target classes may be tied together through logical constraints. For example, a set of classes may be mutually exclusive, meaning that a data instance can belong to at most one of them. The proposed method is based on the intuition that: (i) when classifiers agree, they are more likely to be correct, and (ii) when the classifiers make a prediction that violates the constraints, at least one classifier must be making an error. Experiments on four real-world data sets produce accuracy estimates within a few percent of the true accuracy, using solely unlabeled data. Our models also outperform existing state-of-the-art solutions in both estimating accuracies, and combining multiple classifier outputs. The results emphasize the utility of logical constraints in estimating accuracy, thus validating our intuition.
Modular Belief Updates and Confusion about Measures of Certainty in Artificial Intelligence Research
Horvitz, Eric J., Heckerman, David
Over the last decade, there has been growing interest in the use or measures or change in belief for reasoning with uncertainty in artificial intelligence research. An important characteristic of several methodologies that reason with changes in belief or belief updates, is a property that we term modularity. We call updates that satisfy this property modular updates. Whereas probabilistic measures of belief update - which satisfy the modularity property were first discovered in the nineteenth century, knowledge and discussion of these quantities remains obscure in artificial intelligence research. We define modular updates and discuss their inappropriate use in two influential expert systems.
The Compilation of Decision Models
Heckerman, David, Breese, John S., Horvitz, Eric J.
We introduce and analyze the problem of the compilation of decision models from a decision-theoretic perspective. The techniques described allow us to evaluate various configurations of compiled knowledge given the nature of evidential relationships in a domain, the utilities associated with alternative actions, the costs of run-time delays, and the costs of memory. We describe procedures for selecting a subset of the total observations available to be incorporated into a compiled situation-action mapping, in the context of a binary decision with conditional independence of evidence. The methods allow us to incrementally select the best pieces of evidence to add to the set of compiled knowledge in an engineering setting. After presenting several approaches to compilation, we exercise one of the methods to provide insight into the relationship between the distribution over weights of evidence and the preferred degree of compilation.
Reasoning About Beliefs and Actions Under Computational Resource Constraints
Horvitz, Eric J.
Although many investigators affirm a desire to build reasoning systems that behave consistently with the axiomatic basis defined by probability theory and utility theory, limited resources for engineering and computation can make a complete normative analysis impossible. We attempt to move discussion beyond the debate over the scope of problems that can be handled effectively to cases where it is clear that there are insufficient computational resources to perform an analysis deemed as complete. Under these conditions, we stress the importance of considering the expected costs and benefits of applying alternative approximation procedures and heuristics for computation and knowledge acquisition. We discuss how knowledge about the structure of user utility can be used to control value tradeoffs for tailoring inference to alternative contexts. We address the notion of real-time rationality, focusing on the application of knowledge about the expected timewise-refinement abilities of reasoning strategies to balance the benefits of additional computation with the costs of acting with a partial result. We discuss the benefits of applying decision theory to control the solution of difficult problems given limitations and uncertainty in reasoning resources.
Bounded Conditioning: Flexible Inference for Decisions under Scarce Resources
Horvitz, Eric J., Suermondt, Jaap, Cooper, Gregory F.
We introduce a graceful approach to probabilistic inference called bounded conditioning. Bounded conditioning monotonically refines the bounds on posterior probabilities in a belief network with computation, and converges on final probabilities of interest with the allocation of a complete resource fraction. The approach allows a reasoner to exchange arbitrary quantities of computational resource for incremental gains in inference quality. As such, bounded conditioning holds promise as a useful inference technique for reasoning under the general conditions of uncertain and varying reasoning resources. The algorithm solves a probabilistic bounding problem in complex belief networks by breaking the problem into a set of mutually exclusive, tractable subproblems and ordering their solution by the expected effect that each subproblem will have on the final answer. We introduce the algorithm, discuss its characterization, and present its performance on several belief networks, including a complex model for reasoning about problems in intensive-care medicine.
The Myth of Modularity in Rule-Based Systems
Heckerman, David, Horvitz, Eric J.
In this paper, we examine the concept of modularity, an often cited advantage of the ruled-based representation methodology. We argue that the notion of modularity consists of two distinct concepts which we call syntactic modularity and semantic modularity. We argue that when reasoning under certainty, it is reasonable to regard the rule-based approach as both syntactically and semantically modular. However, we argue that in the case of plausible reasoning, rules are syntactically modular but are rarely semantically modular. To illustrate this point, we examine a particular approach for managing uncertainty in rule-based systems called the MYCIN certainty factor model. We formally define the concept of semantic modularity with respect to the certainty factor model and discuss logical consequences of the definition. We show that the assumption of semantic modularity imposes strong restrictions on rules in a knowledge base. We argue that such restrictions are rarely valid in practical applications. Finally, we suggest how the concept of semantic modularity can be relaxed in a manner that makes it appropriate for plausible reasoning.
Ideal Reformulation of Belief Networks
Breese, John S., Horvitz, Eric J.
The intelligent reformulation or restructuring of a belief network can greatly increase the efficiency of inference. However, time expended for reformulation is not available for performing inference. Thus, under time pressure, there is a tradeoff between the time dedicated to reformulating the network and the time applied to the implementation of a solution. We investigate this partition of resources into time applied to reformulation and time used for inference. We shall describe first general principles for computing the ideal partition of resources under uncertainty. These principles have applicability to a wide variety of problems that can be divided into interdependent phases of problem solving. After, we shall present results of our empirical study of the problem of determining the ideal amount of time to devote to searching for clusters in belief networks. In this work, we acquired and made use of probability distributions that characterize (1) the performance of alternative heuristic search methods for reformulating a network instance into a set of cliques, and (2) the time for executing inference procedures on various belief networks. Given a preference model describing the value of a solution as a function of the delay required for its computation, the system selects an ideal time to devote to reformulation.
Time-Dependent Utility and Action Under Uncertainty
Horvitz, Eric J., Rutledge, Geoffrey
We discuss representing and reasoning with knowledge about the time-dependent utility of an agent's actions. Time-dependent utility plays a crucial role in the interaction between computation and action under bounded resources. We present a semantics for time-dependent utility and describe the use of time-dependent information in decision contexts. We illustrate our discussion with examples of time-pressured reasoning in Protos, a system constructed to explore the ideal control of inference by reasoners with limit abilities.