Goto

Collaborating Authors

 Horton, Mark


Hamming Attention Distillation: Binarizing Keys and Queries for Efficient Long-Context Transformers

arXiv.org Artificial Intelligence

Pre-trained transformer models with extended context windows are notoriously expensive to run at scale, often limiting real-world deployment due to their high computational and memory requirements. In this paper, we introduce Hamming Attention Distillation (HAD), a novel framework that binarizes keys and queries in the attention mechanism to achieve significant efficiency gains. By converting keys and queries into {-1, +1} vectors and replacing dot-product operations with efficient Hamming distance computations, our method drastically reduces computational overhead. Additionally, we incorporate attention matrix sparsification to prune low-impact activations, which further reduces the cost of processing long-context sequences. \par Despite these aggressive compression strategies, our distilled approach preserves a high degree of representational power, leading to substantially improved accuracy compared to prior transformer binarization methods. We evaluate HAD on a range of tasks and models, including the GLUE benchmark, ImageNet, and QuALITY, demonstrating state-of-the-art performance among binarized Transformers while drastically reducing the computational costs of long-context inference. \par We implement HAD in custom hardware simulations, demonstrating superior performance characteristics compared to a custom hardware implementation of standard attention. HAD achieves just $\mathbf{1.78}\%$ performance losses on GLUE compared to $9.08\%$ in state-of-the-art binarization work, and $\mathbf{2.5}\%$ performance losses on ImageNet compared to $12.14\%$, all while targeting custom hardware with a $\mathbf{79}\%$ area reduction and $\mathbf{87}\%$ power reduction compared to its standard attention counterpart.


On the use of Deep Autoencoders for Efficient Embedded Reinforcement Learning

arXiv.org Artificial Intelligence

In autonomous embedded systems, it is often vital to reduce the amount of actions taken in the real world and energy required to learn a policy. Training reinforcement learning agents from high dimensional image representations can be very expensive and time consuming. Autoencoders are deep neural network used to compress high dimensional data such as pixelated images into small latent representations. This compression model is vital to efficiently learn policies, especially when learning on embedded systems. We have implemented this model on the NVIDIA Jetson TX2 embedded GPU, and evaluated the power consumption, throughput, and energy consumption of the autoencoders for various CPU/GPU core combinations, frequencies, and model parameters. Additionally, we have shown the reconstructions generated by the autoencoder to analyze the quality of the generated compressed representation and also the performance of the reinforcement learning agent. Finally, we have presented an assessment of the viability of training these models on embedded systems and their usefulness in developing autonomous policies. Using autoencoders, we were able to achieve 4-5 $\times$ improved performance compared to a baseline RL agent with a convolutional feature extractor, while using less than 2W of power.