Not enough data to create a plot.
Try a different view from the menu above.
Horrocks, Ian
Supposedly Equivalent Facts That Aren't? Entity Frequency in Pre-training Induces Asymmetry in LLMs
He, Yuan, He, Bailan, Ding, Zifeng, Lupidi, Alisia, Zhu, Yuqicheng, Chen, Shuo, Zhang, Caiqi, Chen, Jiaoyan, Ma, Yunpu, Tresp, Volker, Horrocks, Ian
Understanding and mitigating hallucinations in Large Language Models (LLMs) is crucial for ensuring reliable content generation. While previous research has primarily focused on "when" LLMs hallucinate, our work explains "why" and directly links model behaviour to the pre-training data that forms their prior knowledge. Specifically, we demonstrate that an asymmetry exists in the recognition of logically equivalent facts, which can be attributed to frequency discrepancies of entities appearing as subjects versus objects. Given that most pre-training datasets are inaccessible, we leverage the fully open-source OLMo series by indexing its Dolma dataset to estimate entity frequencies. Using relational facts (represented as triples) from Wikidata5M, we construct probing datasets to isolate this effect. Our experiments reveal that facts with a high-frequency subject and a low-frequency object are better recognised than their inverse, despite their logical equivalence. The pattern reverses in low-to-high frequency settings, and no statistically significant asymmetry emerges when both entities are high-frequency. These findings highlight the influential role of pre-training data in shaping model predictions and provide insights for inferring the characteristics of pre-training data in closed or partially closed LLMs.
Ontology Embedding: A Survey of Methods, Applications and Resources
Chen, Jiaoyan, Mashkova, Olga, Zhapa-Camacho, Fernando, Hoehndorf, Robert, He, Yuan, Horrocks, Ian
Ontologies are widely used for representing domain knowledge and meta data, playing an increasingly important role in Information Systems, the Semantic Web, Bioinformatics and many other domains. However, logical reasoning that ontologies can directly support are quite limited in learning, approximation and prediction. One straightforward solution is to integrate statistical analysis and machine learning. To this end, automatically learning vector representation for knowledge of an ontology i.e., ontology embedding has been widely investigated in recent years. Numerous papers have been published on ontology embedding, but a lack of systematic reviews hinders researchers from gaining a comprehensive understanding of this field. To bridge this gap, we write this survey paper, which first introduces different kinds of semantics of ontologies, and formally defines ontology embedding from the perspectives of both mathematics and machine learning, as well as its property of faithfulness. Based on this, it systematically categorises and analyses a relatively complete set of over 80 papers, according to the ontologies and semantics that they aim at, and their technical solutions including geometric modeling, sequence modeling and graph propagation. This survey also introduces the applications of ontology embedding in ontology engineering, machine learning augmentation and life sciences, presents a new library mOWL, and discusses the challenges and future directions.
A Language Model based Framework for New Concept Placement in Ontologies
Dong, Hang, Chen, Jiaoyan, He, Yuan, Gao, Yongsheng, Horrocks, Ian
We investigate the task of inserting new concepts extracted from texts into an ontology using language models. We explore an approach with three steps: edge search which is to find a set of candidate locations to insert (i.e., subsumptions between concepts), edge formation and enrichment which leverages the ontological structure to produce and enhance the edge candidates, and edge selection which eventually locates the edge to be placed into. In all steps, we propose to leverage neural methods, where we apply embedding-based methods and contrastive learning with Pre-trained Language Models (PLMs) such as BERT for edge search, and adapt a BERT fine-tuning-based multi-label Edge-Cross-encoder, and Large Language Models (LLMs) such as GPT series, FLAN-T5, and Llama 2, for edge selection. We evaluate the methods on recent datasets created using the SNOMED CT ontology and the MedMentions entity linking benchmark. The best settings in our framework use fine-tuned PLM for search and a multi-label Cross-encoder for selection. Zero-shot prompting of LLMs is still not adequate for the task, and we propose explainable instruction tuning of LLMs for improved performance. Our study shows the advantages of PLMs and highlights the encouraging performance of LLMs that motivates future studies.
Language Models as Hierarchy Encoders
He, Yuan, Yuan, Zhangdie, Chen, Jiaoyan, Horrocks, Ian
Interpreting hierarchical structures latent in language is a key limitation of current language models (LMs). While previous research has implicitly leveraged these hierarchies to enhance LMs, approaches for their explicit encoding are yet to be explored. To address this, we introduce a novel approach to re-train transformer encoder-based LMs as Hierarchy Transformer encoders (HiTs), harnessing the expansive nature of hyperbolic space. Our method situates the output embedding space of pre-trained LMs within a Poincar\'e ball with a curvature that adapts to the embedding dimension, followed by re-training on hyperbolic cluster and centripetal losses. These losses are designed to effectively cluster related entities (input as texts) and organise them hierarchically. We evaluate HiTs against pre-trained and fine-tuned LMs, focusing on their capabilities in simulating transitive inference, predicting subsumptions, and transferring knowledge across hierarchies. The results demonstrate that HiTs consistently outperform both pre-trained and fine-tuned LMs in these tasks, underscoring the effectiveness and transferability of our re-trained hierarchy encoders.
Optimised Storage for Datalog Reasoning
Zhang, Xinyue, Hu, Pan, Nenov, Yavor, Horrocks, Ian
Materialisation facilitates Datalog reasoning by precomputing all consequences of the facts and the rules so that queries can be directly answered over the materialised facts. However, storing all materialised facts may be infeasible in practice, especially when the rules are complex and the given set of facts is large. We observe that for certain combinations of rules, there exist data structures that compactly represent the reasoning result and can be efficiently queried when necessary. In this paper, we present a general framework that allows for the integration of such optimised storage schemes with standard materialisation algorithms. Moreover, we devise optimised storage schemes targeting at transitive rules and union rules, two types of (combination of) rules that commonly occur in practice. Our experimental evaluation shows that our approach significantly improves memory consumption, sometimes by orders of magnitude, while remaining competitive in terms of query answering time.
Exploring Large Language Models for Ontology Alignment
He, Yuan, Chen, Jiaoyan, Dong, Hang, Horrocks, Ian
This work investigates the applicability of recent generative Large Language Models (LLMs), such as the GPT series and Flan-T5, to ontology alignment for identifying concept equivalence mappings across ontologies. To test the zero-shot performance of Flan-T5-XXL and GPT-3.5-turbo, we leverage challenging subsets from two equivalence matching datasets of the OAEI Bio-ML track, taking into account concept labels and structural contexts. Preliminary findings suggest that LLMs have the potential to outperform existing ontology alignment systems like BERTMap, given careful framework and prompt design.
Ontology Enrichment from Texts: A Biomedical Dataset for Concept Discovery and Placement
Dong, Hang, Chen, Jiaoyan, He, Yuan, Horrocks, Ian
Mentions of new concepts appear regularly in texts and require automated approaches to harvest and place them into Knowledge Bases (KB), e.g., ontologies and taxonomies. Existing datasets suffer from three issues, (i) mostly assuming that a new concept is pre-discovered and cannot support out-of-KB mention discovery; (ii) only using the concept label as the input along with the KB and thus lacking the contexts of a concept label; and (iii) mostly focusing on concept placement w.r.t a taxonomy of atomic concepts, instead of complex concepts, i.e., with logical operators. To address these issues, we propose a new benchmark, adapting MedMentions dataset (PubMed abstracts) with SNOMED CT versions in 2014 and 2017 under the Diseases sub-category and the broader categories of Clinical finding, Procedure, and Pharmaceutical / biologic product. We provide usage on the evaluation with the dataset for out-of-KB mention discovery and concept placement, adapting recent Large Language Model based methods.
Reveal the Unknown: Out-of-Knowledge-Base Mention Discovery with Entity Linking
Dong, Hang, Chen, Jiaoyan, He, Yuan, Liu, Yinan, Horrocks, Ian
Discovering entity mentions that are out of a Knowledge Base (KB) from texts plays a critical role in KB maintenance, but has not yet been fully explored. The current methods are mostly limited to the simple threshold-based approach and feature-based classification, and the datasets for evaluation are relatively rare. We propose BLINKout, a new BERT-based Entity Linking (EL) method which can identify mentions that do not have corresponding KB entities by matching them to a special NIL entity. To better utilize BERT, we propose new techniques including NIL entity representation and classification, with synonym enhancement. We also apply KB Pruning and Versioning strategies to automatically construct out-of-KB datasets from common in-KB EL datasets. Results on five datasets of clinical notes, biomedical publications, and Wikipedia articles in various domains show the advantages of BLINKout over existing methods to identify out-of-KB mentions for the medical ontologies, UMLS, SNOMED CT, and the general KB, WikiData.
Box$^2$EL: Concept and Role Box Embeddings for the Description Logic EL++
Jackermeier, Mathias, Chen, Jiaoyan, Horrocks, Ian
Description logic (DL) ontologies extend knowledge graphs (KGs) with conceptual information and logical background knowledge. In recent years, there has been growing interest in inductive reasoning techniques for such ontologies, which promise to complement classical deductive reasoning algorithms. Similar to KG completion, several existing approaches learn ontology embeddings in a latent space, while additionally ensuring that they faithfully capture the logical semantics of the underlying DL. However, they suffer from several shortcomings, mainly due to a limiting role representation. We propose Box$^2$EL, which represents both concepts and roles as boxes (i.e., axis-aligned hyperrectangles) and demonstrate how it overcomes the limitations of previous methods. We theoretically prove the soundness of our model and conduct an extensive experimental evaluation, achieving state-of-the-art results across a variety of datasets. As part of our evaluation, we introduce a novel benchmark for subsumption prediction involving both atomic and complex concepts.
Machine Learning-Friendly Biomedical Datasets for Equivalence and Subsumption Ontology Matching
He, Yuan, Chen, Jiaoyan, Dong, Hang, Jiménez-Ruiz, Ernesto, Hadian, Ali, Horrocks, Ian
Ontology Matching (OM) plays an important role in many domains such as bioinformatics and the Semantic Web, and its research is becoming increasingly popular, especially with the application of machine learning (ML) techniques. Although the Ontology Alignment Evaluation Initiative (OAEI) represents an impressive effort for the systematic evaluation of OM systems, it still suffers from several limitations including limited evaluation of subsumption mappings, suboptimal reference mappings, and limited support for the evaluation of ML-based systems. To tackle these limitations, we introduce five new biomedical OM tasks involving ontologies extracted from Mondo and UMLS. Each task includes both equivalence and subsumption matching; the quality of reference mappings is ensured by human curation, ontology pruning, etc.; and a comprehensive evaluation framework is proposed to measure OM performance from various perspectives for both ML-based and non-ML-based OM systems. We report evaluation results for OM systems of different types to demonstrate the usage of these resources, all of which are publicly available as part of the new Bio-ML track at OAEI 2022.