Hoover, Benjamin
Dense Associative Memory Through the Lens of Random Features
Hoover, Benjamin, Chau, Duen Horng, Strobelt, Hendrik, Ram, Parikshit, Krotov, Dmitry
Dense Associative Memories are high storage capacity variants of the Hopfield networks that are capable of storing a large number of memory patterns in the weights of the network of a given size. Their common formulations typically require storing each pattern in a separate set of synaptic weights, which leads to the increase of the number of synaptic weights when new patterns are introduced. In this work we propose an alternative formulation of this class of models using random features, commonly used in kernel methods. In this formulation the number of network's parameters remains fixed. At the same time, new memories can be added to the network by modifying existing weights. We show that this novel network closely approximates the energy function and dynamics of conventional Dense Associative Memories and shares their desirable computational properties.
Interactive Visual Learning for Stable Diffusion
Lee, Seongmin, Hoover, Benjamin, Strobelt, Hendrik, Wang, Zijie J., Peng, ShengYun, Wright, Austin, Li, Kevin, Park, Haekyu, Yang, Haoyang, Chau, Polo
Diffusion-based generative models' impressive ability to create convincing images has garnered global attention. However, their complex internal structures and operations often pose challenges for non-experts to grasp. We introduce Diffusion Explainer, the first interactive visualization tool designed to elucidate how Stable Diffusion transforms text prompts into images. It tightly integrates a visual overview of Stable Diffusion's complex components with detailed explanations of their underlying operations. This integration enables users to fluidly transition between multiple levels of abstraction through animations and interactive elements. Offering real-time hands-on experience, Diffusion Explainer allows users to adjust Stable Diffusion's hyperparameters and prompts without the need for installation or specialized hardware. Accessible via users' web browsers, Diffusion Explainer is making significant strides in democratizing AI education, fostering broader public access. More than 7,200 users spanning 113 countries have used our open-sourced tool at https://poloclub.github.io/diffusion-explainer/. A video demo is available at https://youtu.be/MbkIADZjPnA.
Energy Transformer
Hoover, Benjamin, Liang, Yuchen, Pham, Bao, Panda, Rameswar, Strobelt, Hendrik, Chau, Duen Horng, Zaki, Mohammed J., Krotov, Dmitry
Our work combines aspects of three promising paradigms in machine learning, namely, attention mechanism, energy-based models, and associative memory. Attention is the power-house driving modern deep learning successes, but it lacks clear theoretical foundations. Energy-based models allow a principled approach to discriminative and generative tasks, but the design of the energy functional is not straightforward. At the same time, Dense Associative Memory models or Modern Hopfield Networks have a well-established theoretical foundation, and allow an intuitive design of the energy function. We propose a novel architecture, called the Energy Transformer (or ET for short), that uses a sequence of attention layers that are purposely designed to minimize a specifically engineered energy function, which is responsible for representing the relationships between the tokens. In this work, we introduce the theoretical foundations of ET, explore its empirical capabilities using the image completion task, and obtain strong quantitative results on the graph anomaly detection and graph classification tasks.
Memory in Plain Sight: A Survey of the Uncanny Resemblances between Diffusion Models and Associative Memories
Hoover, Benjamin, Strobelt, Hendrik, Krotov, Dmitry, Hoffman, Judy, Kira, Zsolt, Chau, Duen Horng
Diffusion Models (DMs) have recently set state-of-the-art on many generation benchmarks. However, there are myriad ways to describe them mathematically, which makes it difficult to develop a simple understanding of how they work. In this survey, we provide a concise overview of DMs from the perspective of dynamical systems and Ordinary Differential Equations (ODEs) which exposes a mathematical connection to the highly related yet often overlooked class of energy-based models, called Associative Memories (AMs). Energy-based AMs are a theoretical framework that behave much like denoising DMs, but they enable us to directly compute a Lyapunov energy function on which we can perform gradient descent to denoise data. We then summarize the 40 year history of energy-based AMs, beginning with the original Hopfield Network, and discuss new research directions for AMs and DMs that are revealed by characterizing the extent of their similarities and differences
Concept Evolution in Deep Learning Training: A Unified Interpretation Framework and Discoveries
Park, Haekyu, Lee, Seongmin, Hoover, Benjamin, Wright, Austin P., Shaikh, Omar, Duggal, Rahul, Das, Nilaksh, Li, Kevin, Hoffman, Judy, Chau, Duen Horng
We present ConceptEvo, a unified interpretation framework for deep neural networks (DNNs) that reveals the inception and evolution of learned concepts during training. Our work addresses a critical gap in DNN interpretation research, as existing methods primarily focus on post-training interpretation. ConceptEvo introduces two novel technical contributions: (1) an algorithm that generates a unified semantic space, enabling side-by-side comparison of different models during training, and (2) an algorithm that discovers and quantifies important concept evolutions for class predictions. Through a large-scale human evaluation and quantitative experiments, we demonstrate that ConceptEvo successfully identifies concept evolutions across different models, which are not only comprehensible to humans but also crucial for class predictions. ConceptEvo is applicable to both modern DNN architectures, such as ConvNeXt, and classic DNNs, such as VGGs and InceptionV3.
DiffusionDB: A Large-scale Prompt Gallery Dataset for Text-to-Image Generative Models
Wang, Zijie J., Montoya, Evan, Munechika, David, Yang, Haoyang, Hoover, Benjamin, Chau, Duen Horng
With recent advancements in diffusion models, users can generate high-quality images by writing text prompts in natural language. However, generating images with desired details requires proper prompts, and it is often unclear how a model reacts to different prompts or what the best prompts are. To help researchers tackle these critical challenges, we introduce DiffusionDB, the first large-scale text-to-image prompt dataset totaling 6.5TB, containing 14 million images generated by Stable Diffusion, 1.8 million unique prompts, and hyperparameters specified by real users. We analyze the syntactic and semantic characteristics of prompts. We pinpoint specific hyperparameter values and prompt styles that can lead to model errors and present evidence of potentially harmful model usage, such as the generation of misinformation. The unprecedented scale and diversity of this human-actuated dataset provide exciting research opportunities in understanding the interplay between prompts and generative models, detecting deepfakes, and designing human-AI interaction tools to help users more easily use these models. DiffusionDB is publicly available at: https://poloclub.github.io/diffusiondb.
Diffusion Explainer: Visual Explanation for Text-to-image Stable Diffusion
Lee, Seongmin, Hoover, Benjamin, Strobelt, Hendrik, Wang, Zijie J., Peng, ShengYun, Wright, Austin, Li, Kevin, Park, Haekyu, Yang, Haoyang, Chau, Duen Horng
Diffusion-based generative models' impressive ability to create convincing images has captured global attention. However, their complex internal structures and operations often make them difficult for non-experts to understand. We present Diffusion Explainer, the first interactive visualization tool that explains how Stable Diffusion transforms text prompts into images. Diffusion Explainer tightly integrates a visual overview of Stable Diffusion's complex components with detailed explanations of their underlying operations, enabling users to fluidly transition between multiple levels of abstraction through animations and interactive elements. By comparing the evolutions of image representations guided by two related text prompts over refinement timesteps, users can discover the impact of prompts on image generation. Diffusion Explainer runs locally in users' web browsers without the need for installation or specialized hardware, broadening the public's education access to modern AI techniques. Our open-sourced tool is available at: https://poloclub.github.io/diffusion-explainer/. A video demo is available at https://youtu.be/Zg4gxdIWDds.
Fairness Evaluation in Text Classification: Machine Learning Practitioner Perspectives of Individual and Group Fairness
Ashktorab, Zahra, Hoover, Benjamin, Agarwal, Mayank, Dugan, Casey, Geyer, Werner, Yang, Hao Bang, Yurochkin, Mikhail
Mitigating algorithmic bias is a critical task in the development and deployment of machine learning models. While several toolkits exist to aid machine learning practitioners in addressing fairness issues, little is known about the strategies practitioners employ to evaluate model fairness and what factors influence their assessment, particularly in the context of text classification. Two common approaches of evaluating the fairness of a model are group fairness and individual fairness. We run a study with Machine Learning practitioners (n=24) to understand the strategies used to evaluate models. Metrics presented to practitioners (group vs. individual fairness) impact which models they consider fair. Participants focused on risks associated with underpredicting/overpredicting and model sensitivity relative to identity token manipulations. We discover fairness assessment strategies involving personal experiences or how users form groups of identity tokens to test model fairness. We provide recommendations for interactive tools for evaluating fairness in text classification.
FairyTailor: A Multimodal Generative Framework for Storytelling
Bensaid, Eden, Martino, Mauro, Hoover, Benjamin, Andreas, Jacob, Strobelt, Hendrik
Storytelling is an open-ended task that entails creative thinking and requires a constant flow of ideas. Natural language generation (NLG) for storytelling is especially challenging because it requires the generated text to follow an overall theme while remaining creative and diverse to engage the reader. In this work, we introduce a system and a web-based demo, FairyTailor, for human-in-the-loop visual story co-creation. Users can create a cohesive children's fairytale by weaving generated texts and retrieved images with their input. FairyTailor adds another modality and modifies the text generation process to produce a coherent and creative sequence of text and images. To our knowledge, this is the first dynamic tool for multimodal story generation that allows interactive co-formation of both texts and images. It allows users to give feedback on co-created stories and share their results.
Can a Fruit Fly Learn Word Embeddings?
Liang, Yuchen, Ryali, Chaitanya K., Hoover, Benjamin, Grinberg, Leopold, Navlakha, Saket, Zaki, Mohammed J., Krotov, Dmitry
The mushroom body of the fruit fly brain is one of the best studied systems in neuroscience. At its core it consists of a population of Kenyon cells, which receive inputs from multiple sensory modalities. These cells are inhibited by the anterior paired lateral neuron, thus creating a sparse high dimensional representation of the inputs. In this work we study a mathematical formalization of this network motif and apply it to learning the correlational structure between words and their context in a corpus of unstructured text, a common natural language processing (NLP) task. We show that this network can learn semantic representations of words and can generate both static and context-dependent word embeddings. The quality of the learned representations is evaluated on word similarity analysis, word-sense disambiguation, and document classification. It is shown that not only can the fruit fly network motif achieve performance comparable to existing methods in NLP, but, additionally, it uses only a fraction of the computational resources (shorter training time and smaller memory footprint). Deep learning has made tremendous advances in computer vision, natural language processing and many other areas. While taking high-level inspiration from biology, the current generation of deep learning methods are not necessarily biologically realistic. This raises the question whether biological systems can further inform the development of new network architectures and learning algorithms that can lead to competitive performance on machine learning tasks or offer additional insights into intelligent behavior. Our work is inspired by this motivation.