Not enough data to create a plot.
Try a different view from the menu above.
Hongyang Zhang
Optimal Analysis of Subset-Selection Based L_p Low-Rank Approximation
Chen Dan, Hong Wang, Hongyang Zhang, Yuchen Zhou, Pradeep K. Ravikumar
We complement our analysis with lower bounds; these bounds match our upper bounds up to constant 1 when p 2. At the core of our techniques is an application of Riesz-Thorin interpolation theorem from harmonic analysis, which might be of independent interest to other algorithmic designs and analysis more broadly. As a consequence of our analysis, we provide better approximation guarantees for several other algorithms with various time complexity. For example, to make the algorithm of column subset selection computationally efficient, we analyze a polynomial time bi-criteria algorithm which selects O(k log m) columns.
Sample and Computationally Efficient Learning Algorithms under S-Concave Distributions
Maria-Florina F. Balcan, Hongyang Zhang
We provide new results for noise-tolerant and sample-efficient learning algorithms under s-concave distributions. The new class of s-concave distributions is a broad and natural generalization of log-concavity, and includes many important additional distributions, e.g., the Pareto distribution and t-distribution. This class has been studied in the context of efficient sampling, integration, and optimization, but much remains unknown about the geometry of this class of distributions and their applications in the context of learning. The challenge is that unlike the commonly used distributions in learning (uniform or more generally log-concave distributions), this broader class is not closed under the marginalization operator and many such distributions are fat-tailed. In this work, we introduce new convex geometry tools to study the properties of s-concave distributions and use these properties to provide bounds on quantities of interest to learning including the probability of disagreement between two halfspaces, disagreement outside a band, and the disagreement coefficient. We use these results to significantly generalize prior results for margin-based active learning, disagreement-based active learning, and passive learning of intersections of halfspaces. Our analysis of geometric properties of s-concave distributions might be of independent interest to optimization more broadly.
Noise-Tolerant Life-Long Matrix Completion via Adaptive Sampling
Maria-Florina F. Balcan, Hongyang Zhang
We study the problem of recovering an incomplete m n matrix of rank r with columns arriving online over time. This is known as the problem of life-long matrix completion, and is widely applied to recommendation system, computer vision, system identification, etc. The challenge is to design provable algorithms tolerant to a large amount of noises, with small sample complexity. In this work, we give algorithms achieving strong guarantee under two realistic noise models. In bounded deterministic noise, an adversary can add any bounded yet unstructured noise to each column. For this problem, we present an algorithm that returns a matrix of a small error, with sample complexity almost as small as the best prior results in the noiseless case.
Sample and Computationally Efficient Learning Algorithms under S-Concave Distributions
Maria-Florina F. Balcan, Hongyang Zhang
We provide new results for noise-tolerant and sample-efficient learning algorithms under s-concave distributions. The new class of s-concave distributions is a broad and natural generalization of log-concavity, and includes many important additional distributions, e.g., the Pareto distribution and t-distribution. This class has been studied in the context of efficient sampling, integration, and optimization, but much remains unknown about the geometry of this class of distributions and their applications in the context of learning. The challenge is that unlike the commonly used distributions in learning (uniform or more generally log-concave distributions), this broader class is not closed under the marginalization operator and many such distributions are fat-tailed. In this work, we introduce new convex geometry tools to study the properties of s-concave distributions and use these properties to provide bounds on quantities of interest to learning including the probability of disagreement between two halfspaces, disagreement outside a band, and the disagreement coefficient. We use these results to significantly generalize prior results for margin-based active learning, disagreement-based active learning, and passive learning of intersections of halfspaces. Our analysis of geometric properties of s-concave distributions might be of independent interest to optimization more broadly.