Goto

Collaborating Authors

 Hong, Yuan


Backdoor Attacks on Discrete Graph Diffusion Models

arXiv.org Artificial Intelligence

Diffusion models are powerful generative models in continuous data domains such as image and video data. Discrete graph diffusion models (DGDMs) have recently extended them for graph generation, which are crucial in fields like molecule and protein modeling, and obtained the SOTA performance. However, it is risky to deploy DGDMs for safety-critical applications (e.g., drug discovery) without understanding their security vulnerabilities. In this work, we perform the first study on graph diffusion models against backdoor attacks, a severe attack that manipulates both the training and inference/generation phases in graph diffusion models. We first define the threat model, under which we design the attack such that the backdoored graph diffusion model can generate 1) high-quality graphs without backdoor activation, 2) effective, stealthy, and persistent backdoored graphs with backdoor activation, and 3) graphs that are permutation invariant and exchangeable--two core properties in graph generative models. 1) and 2) are validated via empirical evaluations without and with backdoor defenses, while 3) is validated via theoretical results.


GALOT: Generative Active Learning via Optimizable Zero-shot Text-to-image Generation

arXiv.org Artificial Intelligence

Active Learning (AL) represents a crucial methodology within machine learning, emphasizing the identification and utilization of the most informative samples for efficient model training. However, a significant challenge of AL is its dependence on the limited labeled data samples and data distribution, resulting in limited performance. To address this limitation, this paper integrates the zero-shot text-to-image (T2I) synthesis and active learning by designing a novel framework that can efficiently train a machine learning (ML) model sorely using the text description. Specifically, we leverage the AL criteria to optimize the text inputs for generating more informative and diverse data samples, annotated by the pseudo-label crafted from text, then served as a synthetic dataset for active learning. This approach reduces the cost of data collection and annotation while increasing the efficiency of model training by providing informative training samples, enabling a novel end-to-end ML task from text description to vision models. Through comprehensive evaluations, our framework demonstrates consistent and significant improvements over traditional AL methods.


Learning Robust and Privacy-Preserving Representations via Information Theory

arXiv.org Artificial Intelligence

Machine learning models are vulnerable to both security attacks (e.g., adversarial examples) and privacy attacks (e.g., private attribute inference). We take the first step to mitigate both the security and privacy attacks, and maintain task utility as well. Particularly, we propose an information-theoretic framework to achieve the goals through the lens of representation learning, i.e., learning representations that are robust to both adversarial examples and attribute inference adversaries. We also derive novel theoretical results under our framework, e.g., the inherent trade-off between adversarial robustness/utility and attribute privacy, and guaranteed attribute privacy leakage against attribute inference adversaries.


An LLM-Assisted Easy-to-Trigger Backdoor Attack on Code Completion Models: Injecting Disguised Vulnerabilities against Strong Detection

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have transformed code completion tasks, providing context-based suggestions to boost developer productivity in software engineering. As users often fine-tune these models for specific applications, poisoning and backdoor attacks can covertly alter the model outputs. To address this critical security challenge, we introduce CodeBreaker, a pioneering LLM-assisted backdoor attack framework on code completion models. Unlike recent attacks that embed malicious payloads in detectable or irrelevant sections of the code (e.g., comments), CodeBreaker leverages LLMs (e.g., GPT-4) for sophisticated payload transformation (without affecting functionalities), ensuring that both the poisoned data for fine-tuning and generated code can evade strong vulnerability detection. CodeBreaker stands out with its comprehensive coverage of vulnerabilities, making it the first to provide such an extensive set for evaluation. Our extensive experimental evaluations and user studies underline the strong attack performance of CodeBreaker across various settings, validating its superiority over existing approaches. By integrating malicious payloads directly into the source code with minimal transformation, CodeBreaker challenges current security measures, underscoring the critical need for more robust defenses for code completion.


LMO-DP: Optimizing the Randomization Mechanism for Differentially Private Fine-Tuning (Large) Language Models

arXiv.org Artificial Intelligence

Differentially Private Stochastic Gradient Descent (DP-SGD) and its variants have been proposed to ensure rigorous privacy for fine-tuning large-scale pre-trained language models. However, they rely heavily on the Gaussian mechanism, which may overly perturb the gradients and degrade the accuracy, especially in stronger privacy regimes (e.g., the privacy budget $\epsilon < 3$). To address such limitations, we propose a novel Language Model-based Optimal Differential Privacy (LMO-DP) mechanism, which takes the first step to enable the tight composition of accurately fine-tuning (large) language models with a sub-optimal DP mechanism, even in strong privacy regimes (e.g., $0.1\leq \epsilon<3$). Furthermore, we propose a novel offline optimal noise search method to efficiently derive the sub-optimal DP that significantly reduces the noise magnitude. For instance, fine-tuning RoBERTa-large (with 300M parameters) on the SST-2 dataset can achieve an accuracy of 92.20% (given $\epsilon=0.3$, $\delta=10^{-10}$) by drastically outperforming the Gaussian mechanism (e.g., $\sim 50\%$ for small $\epsilon$ and $\delta$). We also draw similar findings on the text generation tasks on GPT-2. Finally, to our best knowledge, LMO-DP is also the first solution to accurately fine-tune Llama-2 with strong differential privacy guarantees. The code will be released soon and available upon request.


Certifying Adapters: Enabling and Enhancing the Certification of Classifier Adversarial Robustness

arXiv.org Artificial Intelligence

Randomized smoothing has become a leading method for achieving certified robustness in deep classifiers against l_{p}-norm adversarial perturbations. Current approaches for achieving certified robustness, such as data augmentation with Gaussian noise and adversarial training, require expensive training procedures that tune large models for different Gaussian noise levels and thus cannot leverage high-performance pre-trained neural networks. In this work, we introduce a novel certifying adapters framework (CAF) that enables and enhances the certification of classifier adversarial robustness. Our approach makes few assumptions about the underlying training algorithm or feature extractor and is thus broadly applicable to different feature extractor architectures (e.g., convolutional neural networks or vision transformers) and smoothing algorithms. We show that CAF (a) enables certification in uncertified models pre-trained on clean datasets and (b) substantially improves the performance of certified classifiers via randomized smoothing and SmoothAdv at multiple radii in CIFAR-10 and ImageNet. We demonstrate that CAF achieves improved certified accuracies when compared to methods based on random or denoised smoothing, and that CAF is insensitive to certifying adapter hyperparameters. Finally, we show that an ensemble of adapters enables a single pre-trained feature extractor to defend against a range of noise perturbation scales.


Differentially Private Federated Learning: A Systematic Review

arXiv.org Artificial Intelligence

In recent years, privacy and security concerns in machine learning have promoted trusted federated learning to the forefront of research. Differential privacy has emerged as the de facto standard for privacy protection in federated learning due to its rigorous mathematical foundation and provable guarantee. Despite extensive research on algorithms that incorporate differential privacy within federated learning, there remains an evident deficiency in systematic reviews that categorize and synthesize these studies. Our work presents a systematic overview of the differentially private federated learning. Existing taxonomies have not adequately considered objects and level of privacy protection provided by various differential privacy models in federated learning. To rectify this gap, we propose a new taxonomy of differentially private federated learning based on definition and guarantee of various differential privacy models and federated scenarios. Our classification allows for a clear delineation of the protected objects across various differential privacy models and their respective neighborhood levels within federated learning environments. Furthermore, we explore the applications of differential privacy in federated learning scenarios. Our work provide valuable insights into privacy-preserving federated learning and suggest practical directions for future research.


Inf2Guard: An Information-Theoretic Framework for Learning Privacy-Preserving Representations against Inference Attacks

arXiv.org Artificial Intelligence

Machine learning (ML) is vulnerable to inference (e.g., membership inference, property inference, and data reconstruction) attacks that aim to infer the private information of training data or dataset. Existing defenses are only designed for one specific type of attack and sacrifice significant utility or are soon broken by adaptive attacks. We address these limitations by proposing an information-theoretic defense framework, called Inf2Guard, against the three major types of inference attacks. Our framework, inspired by the success of representation learning, posits that learning shared representations not only saves time/costs but also benefits numerous downstream tasks. Generally, Inf2Guard involves two mutual information objectives, for privacy protection and utility preservation, respectively. Inf2Guard exhibits many merits: it facilitates the design of customized objectives against the specific inference attack; it provides a general defense framework which can treat certain existing defenses as special cases; and importantly, it aids in deriving theoretical results, e.g., inherent utility-privacy tradeoff and guaranteed privacy leakage. Extensive evaluations validate the effectiveness of Inf2Guard for learning privacy-preserving representations against inference attacks and demonstrate the superiority over the baselines.


FLTracer: Accurate Poisoning Attack Provenance in Federated Learning

arXiv.org Artificial Intelligence

Federated Learning (FL) is a promising distributed learning approach that enables multiple clients to collaboratively train a shared global model. However, recent studies show that FL is vulnerable to various poisoning attacks, which can degrade the performance of global models or introduce backdoors into them. In this paper, we first conduct a comprehensive study on prior FL attacks and detection methods. The results show that all existing detection methods are only effective against limited and specific attacks. Most detection methods suffer from high false positives, which lead to significant performance degradation, especially in not independent and identically distributed (non-IID) settings. To address these issues, we propose FLTracer, the first FL attack provenance framework to accurately detect various attacks and trace the attack time, objective, type, and poisoned location of updates. Different from existing methodologies that rely solely on cross-client anomaly detection, we propose a Kalman filter-based cross-round detection to identify adversaries by seeking the behavior changes before and after the attack. Thus, this makes it resilient to data heterogeneity and is effective even in non-IID settings. To further improve the accuracy of our detection method, we employ four novel features and capture their anomalies with the joint decisions. Extensive evaluations show that FLTracer achieves an average true positive rate of over $96.88\%$ at an average false positive rate of less than $2.67\%$, significantly outperforming SOTA detection methods. \footnote{Code is available at \url{https://github.com/Eyr3/FLTracer}.}


Text-CRS: A Generalized Certified Robustness Framework against Textual Adversarial Attacks

arXiv.org Artificial Intelligence

The language models, especially the basic text classification models, have been shown to be susceptible to textual adversarial attacks such as synonym substitution and word insertion attacks. To defend against such attacks, a growing body of research has been devoted to improving the model robustness. However, providing provable robustness guarantees instead of empirical robustness is still widely unexplored. In this paper, we propose Text-CRS, a generalized certified robustness framework for natural language processing (NLP) based on randomized smoothing. To our best knowledge, existing certified schemes for NLP can only certify the robustness against $\ell_0$ perturbations in synonym substitution attacks. Representing each word-level adversarial operation (i.e., synonym substitution, word reordering, insertion, and deletion) as a combination of permutation and embedding transformation, we propose novel smoothing theorems to derive robustness bounds in both permutation and embedding space against such adversarial operations. To further improve certified accuracy and radius, we consider the numerical relationships between discrete words and select proper noise distributions for the randomized smoothing. Finally, we conduct substantial experiments on multiple language models and datasets. Text-CRS can address all four different word-level adversarial operations and achieve a significant accuracy improvement. We also provide the first benchmark on certified accuracy and radius of four word-level operations, besides outperforming the state-of-the-art certification against synonym substitution attacks.