Hong, Yang
Improving Chinese Character Representation with Formation Tree
Hong, Yang, Li, Yinfei, Qiao, Xiaojun, Li, Rui, Zhang, Junsong
Learning effective representations for Chinese characters presents unique challenges, primarily due to the vast number of characters and their continuous growth, which requires models to handle an expanding category space. Additionally, the inherent sparsity of character usage complicates the generalization of learned representations. Prior research has explored radical-based sequences to overcome these issues, achieving progress in recognizing unseen characters. However, these approaches fail to fully exploit the inherent tree structure of such sequences. To address these limitations and leverage established data properties, we propose Formation Tree-CLIP (FT-CLIP). This model utilizes formation trees to represent characters and incorporates a dedicated tree encoder, significantly improving performance in both seen and unseen character recognition tasks. We further introduce masking for to both character images and tree nodes, enabling efficient and effective training. This approach accelerates training significantly (by a factor of 2 or more) while enhancing accuracy. Extensive experiments show that processing characters through formation trees aligns better with their inherent properties than direct sequential methods, significantly enhancing the generality and usability of the representations.
Practitioners' Challenges and Perceptions of CI Build Failure Predictions at Atlassian
Hong, Yang, Tantithamthavorn, Chakkrit, Pasuksmit, Jirat, Thongtanunam, Patanamon, Friedman, Arik, Zhao, Xing, Krasikov, Anton
Continuous Integration (CI) build failures could significantly impact the software development process and teams, such as delaying the release of new features and reducing developers' productivity. In this work, we report on an empirical study that investigates CI build failures throughout product development at Atlassian. Our quantitative analysis found that the repository dimension is the key factor influencing CI build failures. In addition, our qualitative survey revealed that Atlassian developers perceive CI build failures as challenging issues in practice. Furthermore, we found that the CI build prediction can not only provide proactive insight into CI build failures but also facilitate the team's decision-making. Our study sheds light on the challenges and expectations involved in integrating CI build prediction tools into the Bitbucket environment, providing valuable insights for enhancing CI processes.
LLM-Twin: Mini-Giant Model-driven Beyond 5G Digital Twin Networking Framework with Semantic Secure Communication and Computation
Hong, Yang, Wu, Jun, Morello, Rosario
Beyond 5G networks provide solutions for next-generation communications, especially digital twins networks (DTNs) have gained increasing popularity for bridging physical space and digital space. However, current DTNs networking frameworks pose a number of challenges especially when applied in scenarios that require high communication efficiency and multimodal data processing. First, current DTNs frameworks are unavoidable regarding high resource consumption and communication congestion because of original bit-level communication and high-frequency computation, especially distributed learning-based DTNs. Second, current machine learning models for DTNs are domain-specific (e.g. E-health), making it difficult to handle DT scenarios with multimodal data processing requirements. Last but not least, current security schemes for DTNs, such as blockchain, introduce additional overheads that impair the efficiency of DTNs. To address the above challenges, we propose a large language model (LLM) empowered DTNs networking framework, LLM-Twin. First, we design the mini-giant model collaboration scheme to achieve efficient deployment of LLM in DTNs, since LLM are naturally conducive to processing multimodal data. Then, we design a semantic-level high-efficiency, and secure communication model for DTNs. The feasibility of LLM-Twin is demonstrated by numerical experiments and case studies. To our knowledge, this is the first to propose LLM-based semantic-level digital twin networking framework.