Goto

Collaborating Authors

 Hong, Teakgyu


KIEval: Evaluation Metric for Document Key Information Extraction

arXiv.org Artificial Intelligence

Document Key Information Extraction (KIE) is a technology that transforms valuable information in document images into structured data, and it has become an essential function in industrial settings. However, current evaluation metrics of this technology do not accurately reflect the critical attributes of its industrial applications. In this paper, we present KIEval, a novel application-centric evaluation metric for Document KIE models. Unlike prior metrics, KIEval assesses Document KIE models not just on the extraction of individual information (entity) but also of the structured information (grouping). Evaluation of structured information provides assessment of Document KIE models that are more reflective of extracting grouped information from documents in industrial settings. Designed with industrial application in mind, we believe that KIEval can become a standard evaluation metric for developing or applying Document KIE models in practice. The code will be publicly available.


System Message Generation for User Preferences using Open-Source Models

arXiv.org Artificial Intelligence

System messages play a crucial role in interactions with large language models (LLMs), often serving as prompts to initiate conversations. Through system messages, users can assign specific roles, perform intended tasks, incorporate background information, specify various output formats and communication styles. Despite such versatility, publicly available data are often lack system messages and subject to strict license constraints in the industry field. Manual labeling of publicly available data with system messages that align with user instructions demands significant resources. In view of such challenges, our work introduces SysGen, a pipeline for generating system messages with better aligned assistant responses from the supervised fine-tuning dataset without system messages. Training on SysGen data has demonstrated substantial improvements in the alignment of model responses with system messages and user instructions, as demonstrated across various open-source models on the Multifacet benchmark, while maintaining minimal impact on other unseen benchmarks such as Open LLM Leaderboard 2. Our qualitative analysis highlights the importance of diverse system messages to ensure better adaptability across different contexts.


On Web-based Visual Corpus Construction for Visual Document Understanding

arXiv.org Artificial Intelligence

In recent years, research on visual document understanding (VDU) has grown significantly, with a particular emphasis on the development of self-supervised learning methods. However, one of the significant challenges faced in this field is the limited availability of publicly accessible visual corpora or extensive collections of images with detailed text annotations, particularly for non-Latin or resource-scarce languages. To address this challenge, we propose Web-based Visual Corpus Builder (Webvicob), a dataset generator engine capable of constructing largescale, multilingual visual corpora from raw Wikipedia HTML dumps. Our experiments demonstrate that the data generated by Webvicob can be used to train robust VDU models that perform well on various downstream tasks, such as DocVQA and post-OCR parsing. Furthermore, when using a dataset of 1 million images generated by Webvicob, we observed an improvement of over 13% on the DocVQA Task 3 compared to a dataset of 11 million images from the IIT-CDIP. The implementation of our engine is publicly available on https://github.com/clovaai/


Donut: Document Understanding Transformer without OCR

arXiv.org Artificial Intelligence

Understanding document images (e.g., invoices) has been an important research topic and has many applications in document processing automation. Through the latest advances in deep learning-based Optical Character Recognition (OCR), current Visual Document Understanding (VDU) systems have come to be designed based on OCR. Although such OCR-based approach promise reasonable performance, they suffer from critical problems induced by the OCR, e.g., (1) expensive computational costs and (2) performance degradation due to the OCR error propagation. In this paper, we propose a novel VDU model that is end-to-end trainable without underpinning OCR framework. To this end, we propose a new task and a synthetic document image generator to pre-train the model to mitigate the dependencies on large-scale real document images. Our approach achieves state-of-the-art performance on various document understanding tasks in public benchmark datasets and private industrial service datasets. Through extensive experiments and analysis, we demonstrate the effectiveness of the proposed model especially with consideration for a real-world application.