Hong, Sunwon
Rebalancing Batch Normalization for Exemplar-based Class-Incremental Learning
Cha, Sungmin, Cho, Sungjun, Hwang, Dasol, Hong, Sunwon, Lee, Moontae, Moon, Taesup
Batch Normalization (BN) and its variants has been extensively studied for neural nets in various computer vision tasks, but relatively little work has been dedicated to studying the effect of BN in continual learning. To that end, we develop a new update patch for BN, particularly tailored for the exemplar-based class-incremental learning (CIL). The main issue of BN in CIL is the imbalance of training data between current and past tasks in a mini-batch, which makes the empirical mean and variance as well as the learnable affine transformation parameters of BN heavily biased toward the current task -- contributing to the forgetting of past tasks. While one of the recent BN variants has been developed for "online" CIL, in which the training is done with a single epoch, we show that their method does not necessarily bring gains for "offline" CIL, in which a model is trained with multiple epochs on the imbalanced training data. The main reason for the ineffectiveness of their method lies in not fully addressing the data imbalance issue, especially in computing the gradients for learning the affine transformation parameters of BN. Accordingly, our new hyperparameter-free variant, dubbed as Task-Balanced BN (TBBN), is proposed to more correctly resolve the imbalance issue by making a horizontally-concatenated task-balanced batch using both reshape and repeat operations during training. Based on our experiments on class incremental learning of CIFAR-100, ImageNet-100, and five dissimilar task datasets, we demonstrate that our TBBN, which works exactly the same as the vanilla BN in the inference time, is easily applicable to most existing exemplar-based offline CIL algorithms and consistently outperforms other BN variants.
DisCoHead: Audio-and-Video-Driven Talking Head Generation by Disentangled Control of Head Pose and Facial Expressions
Hwang, Geumbyeol, Hong, Sunwon, Lee, Seunghyun, Park, Sungwoo, Chae, Gyeongsu
For realistic talking head generation, creating natural head motion while maintaining accurate lip synchronization is essential. To fulfill this challenging task, we propose DisCoHead, a novel method to disentangle and control head pose and facial expressions without supervision. DisCoHead uses a single geometric transformation as a bottleneck to isolate and extract head motion from a head-driving video. Either an affine or a thin-plate spline transformation can be used and both work well as geometric bottlenecks. We enhance the efficiency of DisCoHead by integrating a dense motion estimator and the encoder of a generator which are originally separate modules. Taking a step further, we also propose a neural mix approach where dense motion is estimated and applied implicitly by the encoder. After applying the disentangled head motion to a source identity, DisCoHead controls the mouth region according to speech audio, and it blinks eyes and moves eyebrows following a separate driving video of the eye region, via the weight modulation of convolutional neural networks. The experiments using multiple datasets show that DisCoHead successfully generates realistic audio-and-video-driven talking heads and outperforms state-of-the-art methods. Project page: https://deepbrainai-research.github.io/discohead/
New Insights for the Stability-Plasticity Dilemma in Online Continual Learning
Jung, Dahuin, Lee, Dongjin, Hong, Sunwon, Jang, Hyemi, Bae, Ho, Yoon, Sungroh
The aim of continual learning is to learn new tasks continuously (i.e., plasticity) without forgetting previously learned knowledge from old tasks (i.e., stability). In the scenario of online continual learning, wherein data comes strictly in a streaming manner, the plasticity of online continual learning is more vulnerable than offline continual learning because the training signal that can be obtained from a single data point is limited. To overcome the stability-plasticity dilemma in online continual learning, we propose an online continual learning framework named multi-scale feature adaptation network (MuFAN) that utilizes a richer context encoding extracted from different levels of a pre-trained network. Additionally, we introduce a novel structure-wise distillation loss and replace the commonly used batch normalization layer with a newly proposed stability-plasticity normalization module to train MuFAN that simultaneously maintains high plasticity and stability. MuFAN outperforms other state-of-the-art continual learning methods on the SVHN, CIFAR100, miniImageNet, and CORe50 datasets. Extensive experiments and ablation studies validate the significance and scalability of each proposed component: 1) multi-scale feature maps from a pre-trained encoder, 2) the structure-wise distillation loss, and 3) the stability-plasticity normalization module in MuFAN. Code is publicly available at https://github.com/whitesnowdrop/MuFAN.