Hong, Mineui
Semantic Environment Atlas for Object-Goal Navigation
Kim, Nuri, Park, Jeongho, Hong, Mineui, Oh, Songhwai
In this paper, we introduce the Semantic Environment Atlas (SEA), a novel mapping approach designed to enhance visual navigation capabilities of embodied agents. The SEA utilizes semantic graph maps that intricately delineate the relationships between places and objects, thereby enriching the navigational context. These maps are constructed from image observations and capture visual landmarks as sparsely encoded nodes within the environment. The SEA integrates multiple semantic maps from various environments, retaining a memory of place-object relationships, which proves invaluable for tasks such as visual localization and navigation. We developed navigation frameworks that effectively leverage the SEA, and we evaluated these frameworks through visual localization and object-goal navigation tasks. Our SEA-based localization framework significantly outperforms existing methods, accurately identifying locations from single query images. Experimental results in Habitat scenarios show that our method not only achieves a success rate of 39.0%, an improvement of 12.4% over the current state-of-the-art, but also maintains robustness under noisy odometry and actuation conditions, all while keeping computational costs low.
Conflict-Averse Gradient Aggregation for Constrained Multi-Objective Reinforcement Learning
Kim, Dohyeong, Hong, Mineui, Park, Jeongho, Oh, Songhwai
In many real-world applications, a reinforcement learning (RL) agent should consider multiple objectives and adhere to safety guidelines. To address these considerations, we propose a constrained multi-objective RL algorithm named Constrained Multi-Objective Gradient Aggregator (CoMOGA). In the field of multi-objective optimization, managing conflicts between the gradients of the multiple objectives is crucial to prevent policies from converging to local optima. It is also essential to efficiently handle safety constraints for stable training and constraint satisfaction. We address these challenges straightforwardly by treating the maximization of multiple objectives as a constrained optimization problem (COP), where the constraints are defined to improve the original objectives. Existing safety constraints are then integrated into the COP, and the policy is updated using a linear approximation, which ensures the avoidance of gradient conflicts. Despite its simplicity, CoMOGA guarantees optimal convergence in tabular settings. Through various experiments, we have confirmed that preventing gradient conflicts is critical, and the proposed method achieves constraint satisfaction across all tasks.
Diffused Task-Agnostic Milestone Planner
Hong, Mineui, Kang, Minjae, Oh, Songhwai
Addressing decision-making problems using sequence modeling to predict future trajectories shows promising results in recent years. In this paper, we take a step further to leverage the sequence predictive method in wider areas such as long-term planning, vision-based control, and multi-task decision-making. To this end, we propose a method to utilize a diffusion-based generative sequence model to plan a series of milestones in a latent space and to have an agent to follow the milestones to accomplish a given task. The proposed method can learn control-relevant, low-dimensional latent representations of milestones, which makes it possible to efficiently perform long-term planning and vision-based control. Furthermore, our approach exploits generation flexibility of the diffusion model, which makes it possible to plan diverse trajectories for multi-task decision-making. We demonstrate the proposed method across offline reinforcement learning (RL) benchmarks and an visual manipulation environment. The results show that our approach outperforms offline RL methods in solving long-horizon, sparse-reward tasks and multi-task problems, while also achieving the state-of-the-art performance on the most challenging vision-based manipulation benchmark.