Hong, Jinyung
KCNet: An Insect-Inspired Single-Hidden-Layer Neural Network with Randomized Binary Weights for Prediction and Classification Tasks
Hong, Jinyung, Pavlic, Theodore P.
Fruit flies are established model systems for studying olfactory learning as they will readily learn to associate odors with both electric shock or sugar rewards. The mechanisms of the insect brain apparently responsible for odor learning form a relatively shallow neuronal architecture. Olfactory inputs are received by the antennal lobe (AL) of the brain, which produces an encoding of each odor mixture across ~50 sub-units known as glomeruli. Each of these glomeruli then projects its component of this feature vector to several of ~2000 so-called Kenyon Cells (KCs) in a region of the brain known as the mushroom body (MB). Fly responses to odors are generated by small downstream neutrophils that decode the higher-order representation from the MB. Research has shown that there is no recognizable pattern in the glomeruli--KC connections (and thus the particular higher-order representations); they are akin to fingerprints--even isogenic flies have different projections. Leveraging insights from this architecture, we propose KCNet, a single-hidden-layer neural network that contains sparse, randomized, binary weights between the input layer and the hidden layer and analytically learned weights between the hidden layer and the output layer. Furthermore, we also propose a dynamic optimization algorithm that enables the KCNet to increase performance beyond its structural limits by searching for a more efficient set of inputs. For odorant-perception tasks that predict the perceptual properties of an odorant, we show that KCNet outperforms existing data-driven approaches, such as XGBoost. For image classification tasks, KCNet achieves reasonable performance on benchmark datasets (MNIST, Fashion-MNIST, and EMNIST) without any data-augmentation methods or convolutional layers and shows a particularly fast running time.
Bi-ICE: An Inner Interpretable Framework for Image Classification via Bi-directional Interactions between Concept and Input Embeddings
Hong, Jinyung, Kim, Yearim, Park, Keun Hee, Han, Sangyu, Kwak, Nojun, Pavlic, Theodore P.
Inner interpretability is a promising field focused on uncovering the internal mechanisms of AI systems and developing scalable, automated methods to understand these systems at a mechanistic level. While significant research has explored top-down approaches starting from high-level problems or algorithmic hypotheses and bottom-up approaches building higher-level abstractions from low-level or circuit-level descriptions, most efforts have concentrated on analyzing large language models. Moreover, limited attention has been given to applying inner interpretability to large-scale image tasks, primarily focusing on architectural and functional levels to visualize learned concepts. In this paper, we first present a conceptual framework that supports inner interpretability and multilevel analysis for large-scale image classification tasks. We introduce the Bi-directional Interaction between Concept and Input Embeddings (Bi-ICE) module, which facilitates interpretability across the computational, algorithmic, and implementation levels. This module enhances transparency by generating predictions based on human-understandable concepts, quantifying their contributions, and localizing them within the inputs. Finally, we showcase enhanced transparency in image classification, measuring concept contributions and pinpointing their locations within the inputs. Our approach highlights algorithmic interpretability by demonstrating the process of concept learning and its convergence.
Learning Decomposable and Debiased Representations via Attribute-Centric Information Bottlenecks
Hong, Jinyung, Jeon, Eun Som, Kim, Changhoon, Park, Keun Hee, Nath, Utkarsh, Yang, Yezhou, Turaga, Pavan, Pavlic, Theodore P.
Biased attributes, spuriously correlated with target labels in a dataset, can problematically lead to neural networks that learn improper shortcuts for classifications and limit their capabilities for out-of-distribution (OOD) generalization. Although many debiasing approaches have been proposed to ensure correct predictions from biased datasets, few studies have considered learning latent embedding consisting of intrinsic and biased attributes that contribute to improved performance and explain how the model pays attention to attributes. In this paper, we propose a novel debiasing framework, Debiasing Global Workspace, introducing attention-based information bottlenecks for learning compositional representations of attributes without defining specific bias types. Based on our observation that learning shape-centric representation helps robust performance on OOD datasets, we adopt those abilities to learn robust and generalizable representations of decomposable latent embeddings corresponding to intrinsic and biasing attributes. We conduct comprehensive evaluations on biased datasets, along with both quantitative and qualitative analyses, to showcase our approach's efficacy in attribute-centric representation learning and its ability to differentiate between intrinsic and bias-related features.
Randomly Weighted Neuromodulation in Neural Networks Facilitates Learning of Manifolds Common Across Tasks
Hong, Jinyung, Pavlic, Theodore P.
Geometric Sensitive Hashing functions, a family of Local Sensitive Hashing functions, are neural network models that learn class-specific manifold geometry in supervised learning. However, given a set of supervised learning tasks, understanding the manifold geometries that can represent each task and the kinds of relationships between the tasks based on them has received little attention. We explore a formalization of this question by considering a generative process where each task is associated with a high-dimensional manifold, which can be done in brain-like models with neuromodulatory systems. Following this formulation, we define \emph{Task-specific Geometric Sensitive Hashing~(T-GSH)} and show that a randomly weighted neural network with a neuromodulation system can realize this function.
Concept-Centric Transformers: Enhancing Model Interpretability through Object-Centric Concept Learning within a Shared Global Workspace
Hong, Jinyung, Park, Keun Hee, Pavlic, Theodore P.
Many interpretable AI approaches have been proposed to provide plausible explanations for a model's decision-making. However, configuring an explainable model that effectively communicates among computational modules has received less attention. A recently proposed shared global workspace theory showed that networks of distributed modules can benefit from sharing information with a bottlenecked memory because the communication constraints encourage specialization, compositionality, and synchronization among the modules. Inspired by this, we propose Concept-Centric Transformers, a simple yet effective configuration of the shared global workspace for interpretability, consisting of: i) an object-centric-based memory module for extracting semantic concepts from input features, ii) a cross-attention mechanism between the learned concept and input embeddings, and iii) standard classification and explanation losses to allow human analysts to directly assess an explanation for the model's classification reasoning. We test our approach against other existing concept-based methods on classification tasks for various datasets, including CIFAR100, CUB-200-2011, and ImageNet, and we show that our model achieves better classification accuracy than all baselines across all problems but also generates more consistent concept-based explanations of classification output.
Learning to Modulate Random Weights: Neuromodulation-inspired Neural Networks For Efficient Continual Learning
Hong, Jinyung, Pavlic, Theodore P.
Existing Continual Learning (CL) approaches have focused on addressing catastrophic forgetting by leveraging regularization methods, replay buffers, and task-specific components. However, realistic CL solutions must be shaped not only by metrics of catastrophic forgetting but also by computational efficiency and running time. Here, we introduce a novel neural network architecture inspired by neuromodulation in biological nervous systems to economically and efficiently address catastrophic forgetting and provide new avenues for interpreting learned representations. Neuromodulation is a biological mechanism that has received limited attention in machine learning; it dynamically controls and fine tunes synaptic dynamics in real time to track the demands of different behavioral contexts. Inspired by this, our proposed architecture learns a relatively small set of parameters per task context that \emph{neuromodulates} the activity of unchanging, randomized weights that transform the input. We show that this approach has strong learning performance per task despite the very small number of learnable parameters. Furthermore, because context vectors are so compact, multiple networks can be stored concurrently with no interference and little spatial footprint, thus completely eliminating catastrophic forgetting and accelerating the training process.
Randomly Weighted, Untrained Neural Tensor Networks Achieve Greater Relational Expressiveness
Hong, Jinyung, Pavlic, Theodore P.
Neural Tensor Networks (NTNs), which are structured to encode the degree of relationship among pairs of entities, are used in Logic Tensor Networks (LTNs) to facilitate Statistical Relational Learning (SRL) in first-order logic. In this paper, we propose Randomly Weighted Tensor Networks (RWTNs), which incorporate randomly drawn, untrained tensors into an NTN encoder network with a trained decoder network. We show that RWTNs meet or surpass the performance of traditionally trained LTNs for Semantic Image Interpretation (SII) tasks that have been used as a representative example of how LTNs utilize reasoning over first-order logic to exceed the performance of solely data-driven methods. We demonstrate that RWTNs outperform LTNs for the detection of the relevant part-of relations between objects, and we show that RWTNs can achieve similar performance as LTNs for object classification while using fewer parameters for learning. Furthermore, we demonstrate that because the randomized weights do not depend on the data, several decoder networks can share a single NTN, giving RWTNs a unique economy of spatial scale for simultaneous classification tasks.