Hong, Jie
Latent-based Diffusion Model for Long-tailed Recognition
Han, Pengxiao, Ye, Changkun, Zhou, Jieming, Zhang, Jing, Hong, Jie, Li, Xuesong
Long-tailed imbalance distribution is a common issue in practical computer vision applications. Previous works proposed methods to address this problem, which can be categorized into several classes: re-sampling, re-weighting, transfer learning, and feature augmentation. In recent years, diffusion models have shown an impressive generation ability in many sub-problems of deep computer vision. However, its powerful generation has not been explored in long-tailed problems. We propose a new approach, the Latent-based Diffusion Model for Long-tailed Recognition (LDMLR), as a feature augmentation method to tackle the issue. First, we encode the imbalanced dataset into features using the baseline model. Then, we train a Denoising Diffusion Implicit Model (DDIM) using these encoded features to generate pseudo-features. Finally, we train the classifier using the encoded and pseudo-features from the previous two steps. The model's accuracy shows an improvement on the CIFAR-LT and ImageNet-LT datasets by using the proposed method.
What Images are More Memorable to Machines?
Han, Junlin, Zhan, Huangying, Hong, Jie, Fang, Pengfei, Li, Hongdong, Petersson, Lars, Reid, Ian
This paper studies the problem of measuring and predicting how memorable an image is to pattern recognition machines, as a path to explore machine intelligence. Firstly, we propose a self-supervised machine memory quantification pipeline, dubbed ``MachineMem measurer'', to collect machine memorability scores of images. Similar to humans, machines also tend to memorize certain kinds of images, whereas the types of images that machines and humans memorize are different. Through in-depth analysis and comprehensive visualizations, we gradually unveil that``complex" images are usually more memorable to machines. We further conduct extensive experiments across 11 different machines (from linear classifiers to modern ViTs) and 9 pre-training methods to analyze and understand machine memory. This work proposes the concept of machine memorability and opens a new research direction at the interface between machine memory and visual data.