Hong, Hanbin
GALOT: Generative Active Learning via Optimizable Zero-shot Text-to-image Generation
Hong, Hanbin, Yan, Shenao, Feng, Shuya, Yan, Yan, Hong, Yuan
Active Learning (AL) represents a crucial methodology within machine learning, emphasizing the identification and utilization of the most informative samples for efficient model training. However, a significant challenge of AL is its dependence on the limited labeled data samples and data distribution, resulting in limited performance. To address this limitation, this paper integrates the zero-shot text-to-image (T2I) synthesis and active learning by designing a novel framework that can efficiently train a machine learning (ML) model sorely using the text description. Specifically, we leverage the AL criteria to optimize the text inputs for generating more informative and diverse data samples, annotated by the pseudo-label crafted from text, then served as a synthetic dataset for active learning. This approach reduces the cost of data collection and annotation while increasing the efficiency of model training by providing informative training samples, enabling a novel end-to-end ML task from text description to vision models. Through comprehensive evaluations, our framework demonstrates consistent and significant improvements over traditional AL methods.
An LLM-Assisted Easy-to-Trigger Backdoor Attack on Code Completion Models: Injecting Disguised Vulnerabilities against Strong Detection
Yan, Shenao, Wang, Shen, Duan, Yue, Hong, Hanbin, Lee, Kiho, Kim, Doowon, Hong, Yuan
Large Language Models (LLMs) have transformed code completion tasks, providing context-based suggestions to boost developer productivity in software engineering. As users often fine-tune these models for specific applications, poisoning and backdoor attacks can covertly alter the model outputs. To address this critical security challenge, we introduce CodeBreaker, a pioneering LLM-assisted backdoor attack framework on code completion models. Unlike recent attacks that embed malicious payloads in detectable or irrelevant sections of the code (e.g., comments), CodeBreaker leverages LLMs (e.g., GPT-4) for sophisticated payload transformation (without affecting functionalities), ensuring that both the poisoned data for fine-tuning and generated code can evade strong vulnerability detection. CodeBreaker stands out with its comprehensive coverage of vulnerabilities, making it the first to provide such an extensive set for evaluation. Our extensive experimental evaluations and user studies underline the strong attack performance of CodeBreaker across various settings, validating its superiority over existing approaches. By integrating malicious payloads directly into the source code with minimal transformation, CodeBreaker challenges current security measures, underscoring the critical need for more robust defenses for code completion.
Certifying Adapters: Enabling and Enhancing the Certification of Classifier Adversarial Robustness
Deng, Jieren, Hong, Hanbin, Palmer, Aaron, Zhou, Xin, Bi, Jinbo, Mahmood, Kaleel, Hong, Yuan, Aguiar, Derek
Randomized smoothing has become a leading method for achieving certified robustness in deep classifiers against l_{p}-norm adversarial perturbations. Current approaches for achieving certified robustness, such as data augmentation with Gaussian noise and adversarial training, require expensive training procedures that tune large models for different Gaussian noise levels and thus cannot leverage high-performance pre-trained neural networks. In this work, we introduce a novel certifying adapters framework (CAF) that enables and enhances the certification of classifier adversarial robustness. Our approach makes few assumptions about the underlying training algorithm or feature extractor and is thus broadly applicable to different feature extractor architectures (e.g., convolutional neural networks or vision transformers) and smoothing algorithms. We show that CAF (a) enables certification in uncertified models pre-trained on clean datasets and (b) substantially improves the performance of certified classifiers via randomized smoothing and SmoothAdv at multiple radii in CIFAR-10 and ImageNet. We demonstrate that CAF achieves improved certified accuracies when compared to methods based on random or denoised smoothing, and that CAF is insensitive to certifying adapter hyperparameters. Finally, we show that an ensemble of adapters enables a single pre-trained feature extractor to defend against a range of noise perturbation scales.
Text-CRS: A Generalized Certified Robustness Framework against Textual Adversarial Attacks
Zhang, Xinyu, Hong, Hanbin, Hong, Yuan, Huang, Peng, Wang, Binghui, Ba, Zhongjie, Ren, Kui
The language models, especially the basic text classification models, have been shown to be susceptible to textual adversarial attacks such as synonym substitution and word insertion attacks. To defend against such attacks, a growing body of research has been devoted to improving the model robustness. However, providing provable robustness guarantees instead of empirical robustness is still widely unexplored. In this paper, we propose Text-CRS, a generalized certified robustness framework for natural language processing (NLP) based on randomized smoothing. To our best knowledge, existing certified schemes for NLP can only certify the robustness against $\ell_0$ perturbations in synonym substitution attacks. Representing each word-level adversarial operation (i.e., synonym substitution, word reordering, insertion, and deletion) as a combination of permutation and embedding transformation, we propose novel smoothing theorems to derive robustness bounds in both permutation and embedding space against such adversarial operations. To further improve certified accuracy and radius, we consider the numerical relationships between discrete words and select proper noise distributions for the randomized smoothing. Finally, we conduct substantial experiments on multiple language models and datasets. Text-CRS can address all four different word-level adversarial operations and achieve a significant accuracy improvement. We also provide the first benchmark on certified accuracy and radius of four word-level operations, besides outperforming the state-of-the-art certification against synonym substitution attacks.
Certifiable Black-Box Attack: Ensuring Provably Successful Attack for Adversarial Examples
Hong, Hanbin, Hong, Yuan
Black-box adversarial attacks have shown strong potential to subvert machine learning models. Existing black-box adversarial attacks craft the adversarial examples by iteratively querying the target model and/or leveraging the transferability of a local surrogate model. Whether such attack can succeed remains unknown to the adversary when empirically designing the attack. In this paper, to our best knowledge, we take the first step to study a new paradigm of adversarial attacks -- certifiable black-box attack that can guarantee the attack success rate of the crafted adversarial examples. Specifically, we revise the randomized smoothing to establish novel theories for ensuring the attack success rate of the adversarial examples. To craft the adversarial examples with the certifiable attack success rate (CASR) guarantee, we design several novel techniques, including a randomized query method to query the target model, an initialization method with smoothed self-supervised perturbation to derive certifiable adversarial examples, and a geometric shifting method to reduce the perturbation size of the certifiable adversarial examples for better imperceptibility. We have comprehensively evaluated the performance of the certifiable black-box attack on CIFAR10 and ImageNet datasets against different levels of defenses. Both theoretical and experimental results have validated the effectiveness of the proposed certifiable attack.