Hong, Danfeng
Semi-supervised Semantic Segmentation for Remote Sensing Images via Multi-scale Uncertainty Consistency and Cross-Teacher-Student Attention
Wang, Shanwen, Chen, Changrui, Sun, Xin, Hong, Danfeng, Han, Jungong
Semi-supervised learning offers an appealing solution for remote sensing (RS) image segmentation to relieve the burden of labor-intensive pixel-level labeling. However, RS images pose unique challenges, including rich multi-scale features and high inter-class similarity. To address these problems, this paper proposes a novel semi-supervised Multi-Scale Uncertainty and Cross-Teacher-Student Attention (MUCA) model for RS image semantic segmentation tasks. Specifically, MUCA constrains the consistency among feature maps at different layers of the network by introducing a multi-scale uncertainty consistency regularization. It improves the multi-scale learning capability of semi-supervised algorithms on unlabeled data. Additionally, MUCA utilizes a Cross-Teacher-Student attention mechanism to guide the student network, guiding the student network to construct more discriminative feature representations through complementary features from the teacher network. This design effectively integrates weak and strong augmentations (WA and SA) to further boost segmentation performance. To verify the effectiveness of our model, we conduct extensive experiments on ISPRS-Potsdam and LoveDA datasets. The experimental results show the superiority of our method over state-of-the-art semi-supervised methods. Notably, our model excels in distinguishing highly similar objects, showcasing its potential for advancing semi-supervised RS image segmentation tasks.
FedRSClip: Federated Learning for Remote Sensing Scene Classification Using Vision-Language Models
Lin, Hui, Zhang, Chao, Hong, Danfeng, Dong, Kexin, Wen, Congcong
Remote sensing data is often distributed across multiple institutions, and due to privacy concerns and data-sharing restrictions, leveraging large-scale datasets in a centralized training framework is challenging. Federated learning offers a promising solution by enabling collaborative model training across distributed data sources without requiring data centralization. However, current Vision-Language Models (VLMs), which typically contain billions of parameters, pose significant communication challenges for traditional federated learning approaches based on model parameter updates, as they would incur substantial communication costs. In this paper, we propose FedRSCLIP, the first federated learning framework designed for remote sensing image classification based on a VLM, specifically CLIP. FedRSCLIP addresses the challenges of data heterogeneity and large-scale model transmission in federated environments by introducing Prompt Learning, which optimizes only a small set of tunable parameters. The framework introduces a dual-prompt mechanism, comprising Shared Prompts for global knowledge sharing and Private Prompts for client-specific adaptation. To maintain semantic coherence between shared and private prompts, we propose the Dual Prompt Alignment Constraint to balance global consistency and local adaptability across diverse client distributions. Additionally, to enhance cross-modal representation learning, we introduce the Cross-Modal Feature Alignment Constraint to align multimodal features between text and image prompts. To validate the effectiveness of our proposed model, we construct a Fed-RSIC dataset based on three existing remote sensing image classification datasets, specifically designed to simulate various federated learning configurations. Experimental results demonstrate the effectiveness and superiority of FedRSCLIP in remote sensing image classification.
SeaMo: A Multi-Seasonal and Multimodal Remote Sensing Foundation Model
Li, Xuyang, Hong, Danfeng, Li, Chenyu, Chanussot, Jocelyn
Remote Sensing (RS) data contains a wealth of multi-dimensional information crucial for Earth observation. Owing to its vast volume, diverse sources, and temporal properties, RS data is highly suitable for the development of large Visual Foundation Models (VFMs). VFMs act as robust feature extractors, learning from extensive RS data, and are subsequently fine-tuned for deployment in various geoscientific tasks. However, current VFMs in the RS domain are predominantly pretrained and tailored exclusively for specific characteristics of RS imagery, neglecting the potential of utilizing the multi-dimensional properties of RS data. Therefore, in this work, we propose SeaMo, a pioneering visual foundation model that integrates multi-seasonal and multimodal information in the RS field. SeaMo is designed to harness multiple properties of RS data. Within the masked image modeling framework, we employ non-aligned cropping techniques to extract spatial properties, use multi-source inputs for multimodal integration, and incorporate temporal-multimodal fusion blocks for effective assimilation of multi-seasonal data. SeaMo explicitly models the multi-dimensional properties of RS data, making the model more comprehensive, robust, and versatile. We applied SeaMo to several downstream geoscience tasks, which demonstrated exceptional performance. Extensive ablation studies were conducted to validate the model's superiority.
RS-MoE: Mixture of Experts for Remote Sensing Image Captioning and Visual Question Answering
Lin, Hui, Hong, Danfeng, Ge, Shuhang, Luo, Chuyao, Jiang, Kai, Jin, Hao, Wen, Congcong
Remote Sensing Image Captioning (RSIC) presents unique challenges and plays a critical role in applications. Traditional RSIC methods often struggle to produce rich and diverse descriptions. Recently, with advancements in VLMs, efforts have emerged to integrate these models into the remote sensing domain and to introduce descriptive datasets specifically designed to enhance VLM training. This paper proposes RS-MoE, a first Mixture of Expert based VLM specifically customized for remote sensing domain. Unlike traditional MoE models, the core of RS-MoE is the MoE Block, which incorporates a novel Instruction Router and multiple lightweight Large Language Models (LLMs) as expert models. The Instruction Router is designed to generate specific prompts tailored for each corresponding LLM, guiding them to focus on distinct aspects of the RSIC task. This design not only allows each expert LLM to concentrate on a specific subset of the task, thereby enhancing the specificity and accuracy of the generated captions, but also improves the scalability of the model by facilitating parallel processing of sub-tasks. Additionally, we present a two-stage training strategy for tuning our RS-MoE model to prevent performance degradation due to sparsity. We fine-tuned our model on the RSICap dataset using our proposed training strategy. Experimental results on the RSICap dataset, along with evaluations on other traditional datasets where no additional fine-tuning was applied, demonstrate that our model achieves state-of-the-art performance in generating precise and contextually relevant captions. Notably, our RS-MoE-1B variant achieves performance comparable to 13B VLMs, demonstrating the efficiency of our model design. Moreover, our model demonstrates promising generalization capabilities by consistently achieving state-of-the-art performance on the Remote Sensing Visual Question Answering (RSVQA) task.
Superpixelwise Low-rank Approximation based Partial Label Learning for Hyperspectral Image Classification
Yang, Shujun, Zhang, Yu, Ding, Yao, Hong, Danfeng
Insufficient prior knowledge of a captured hyperspectral image (HSI) scene may lead the experts or the automatic labeling systems to offer incorrect labels or ambiguous labels (i.e., assigning each training sample to a group of candidate labels, among which only one of them is valid; this is also known as partial label learning) during the labeling process. Accordingly, how to learn from such data with ambiguous labels is a problem of great practical importance. In this paper, we propose a novel superpixelwise low-rank approximation (LRA)-based partial label learning method, namely SLAP, which is the first to take into account partial label learning in HSI classification. SLAP is mainly composed of two phases: disambiguating the training labels and acquiring the predictive model. Specifically, in the first phase, we propose a superpixelwise LRA-based model, preparing the affinity graph for the subsequent label propagation process while extracting the discriminative representation to enhance the following classification task of the second phase. Then to disambiguate the training labels, label propagation propagates the labeling information via the affinity graph of training pixels. In the second phase, we take advantage of the resulting disambiguated training labels and the discriminative representations to enhance the classification performance. The extensive experiments validate the advantage of the proposed SLAP method over state-of-the-art methods.
Low-Rank Representations Meets Deep Unfolding: A Generalized and Interpretable Network for Hyperspectral Anomaly Detection
Li, Chenyu, Zhang, Bing, Hong, Danfeng, Yao, Jing, Chanussot, Jocelyn
Current hyperspectral anomaly detection (HAD) benchmark datasets suffer from low resolution, simple background, and small size of the detection data. These factors also limit the performance of the well-known low-rank representation (LRR) models in terms of robustness on the separation of background and target features and the reliance on manual parameter selection. To this end, we build a new set of HAD benchmark datasets for improving the robustness of the HAD algorithm in complex scenarios, AIR-HAD for short. Accordingly, we propose a generalized and interpretable HAD network by deeply unfolding a dictionary-learnable LLR model, named LRR-Net$^+$, which is capable of spectrally decoupling the background structure and object properties in a more generalized fashion and eliminating the bias introduced by vital interference targets concurrently. In addition, LRR-Net$^+$ integrates the solution process of the Alternating Direction Method of Multipliers (ADMM) optimizer with the deep network, guiding its search process and imparting a level of interpretability to parameter optimization. Additionally, the integration of physical models with DL techniques eliminates the need for manual parameter tuning. The manually tuned parameters are seamlessly transformed into trainable parameters for deep neural networks, facilitating a more efficient and automated optimization process. Extensive experiments conducted on the AIR-HAD dataset show the superiority of our LRR-Net$^+$ in terms of detection performance and generalization ability, compared to top-performing rivals. Furthermore, the compilable codes and our AIR-HAD benchmark datasets in this paper will be made available freely and openly at \url{https://sites.google.com/view/danfeng-hong}.
Spatial Gated Multi-Layer Perceptron for Land Use and Land Cover Mapping
Jamali, Ali, Roy, Swalpa Kumar, Hong, Danfeng, Atkinson, Peter M, Ghamisi, Pedram
Convolutional Neural Networks (CNNs) are models that are utilized extensively for the hierarchical extraction of features. Vision transformers (ViTs), through the use of a self-attention mechanism, have recently achieved superior modeling of global contextual information compared to CNNs. However, to realize their image classification strength, ViTs require substantial training datasets. Where the available training data are limited, current advanced multi-layer perceptrons (MLPs) can provide viable alternatives to both deep CNNs and ViTs. In this paper, we developed the SGU-MLP, a learning algorithm that effectively uses both MLPs and spatial gating units (SGUs) for precise land use land cover (LULC) mapping. Results illustrated the superiority of the developed SGU-MLP classification algorithm over several CNN and CNN-ViT-based models, including HybridSN, ResNet, iFormer, EfficientFormer and CoAtNet. The proposed SGU-MLP algorithm was tested through three experiments in Houston, USA, Berlin, Germany and Augsburg, Germany. The SGU-MLP classification model was found to consistently outperform the benchmark CNN and CNN-ViT-based algorithms. For example, for the Houston experiment, SGU-MLP significantly outperformed HybridSN, CoAtNet, Efficientformer, iFormer and ResNet by approximately 15%, 19%, 20%, 21%, and 25%, respectively, in terms of average accuracy. The code will be made publicly available at https://github.com/aj1365/SGUMLP
Multimodal Fusion Transformer for Remote Sensing Image Classification
Roy, Swalpa Kumar, Deria, Ankur, Hong, Danfeng, Rasti, Behnood, Plaza, Antonio, Chanussot, Jocelyn
Vision transformers (ViTs) have been trending in image classification tasks due to their promising performance when compared to convolutional neural networks (CNNs). As a result, many researchers have tried to incorporate ViTs in hyperspectral image (HSI) classification tasks. To achieve satisfactory performance, close to that of CNNs, transformers need fewer parameters. ViTs and other similar transformers use an external classification (CLS) token which is randomly initialized and often fails to generalize well, whereas other sources of multimodal datasets, such as light detection and ranging (LiDAR) offer the potential to improve these models by means of a CLS. In this paper, we introduce a new multimodal fusion transformer (MFT) network which comprises a multihead cross patch attention (mCrossPA) for HSI land-cover classification. Our mCrossPA utilizes other sources of complementary information in addition to the HSI in the transformer encoder to achieve better generalization. The concept of tokenization is used to generate CLS and HSI patch tokens, helping to learn a {distinctive representation} in a reduced and hierarchical feature space. Extensive experiments are carried out on {widely used benchmark} datasets {i.e.,} the University of Houston, Trento, University of Southern Mississippi Gulfpark (MUUFL), and Augsburg. We compare the results of the proposed MFT model with other state-of-the-art transformers, classical CNNs, and conventional classifiers models. The superior performance achieved by the proposed model is due to the use of multihead cross patch attention. The source code will be made available publicly at \url{https://github.com/AnkurDeria/MFT}.}
SpectralFormer: Rethinking Hyperspectral Image Classification with Transformers
Hong, Danfeng, Han, Zhu, Yao, Jing, Gao, Lianru, Zhang, Bing, Plaza, Antonio, Chanussot, Jocelyn
Hyperspectral (HS) images are characterized by approximately contiguous spectral information, enabling the fine identification of materials by capturing subtle spectral discrepancies. Owing to their excellent locally contextual modeling ability, convolutional neural networks (CNNs) have been proven to be a powerful feature extractor in HS image classification. However, CNNs fail to mine and represent the sequence attributes of spectral signatures well due to the limitations of their inherent network backbone. To solve this issue, we rethink HS image classification from a sequential perspective with transformers, and propose a novel backbone network called \ul{SpectralFormer}. Beyond band-wise representations in classic transformers, SpectralFormer is capable of learning spectrally local sequence information from neighboring bands of HS images, yielding group-wise spectral embeddings. More significantly, to reduce the possibility of losing valuable information in the layer-wise propagation process, we devise a cross-layer skip connection to convey memory-like components from shallow to deep layers by adaptively learning to fuse "soft" residuals across layers. It is worth noting that the proposed SpectralFormer is a highly flexible backbone network, which can be applicable to both pixel- and patch-wise inputs. We evaluate the classification performance of the proposed SpectralFormer on three HS datasets by conducting extensive experiments, showing the superiority over classic transformers and achieving a significant improvement in comparison with state-of-the-art backbone networks. The codes of this work will be available at \url{https://sites.google.com/view/danfeng-hong} for the sake of reproducibility.
Interpretable Hyperspectral AI: When Non-Convex Modeling meets Hyperspectral Remote Sensing
Hong, Danfeng, He, Wei, Yokoya, Naoto, Yao, Jing, Gao, Lianru, Zhang, Liangpei, Chanussot, Jocelyn, Zhu, Xiao Xiang
Hyperspectral imaging, also known as image spectrometry, is a landmark technique in geoscience and remote sensing (RS). In the past decade, enormous efforts have been made to process and analyze these hyperspectral (HS) products mainly by means of seasoned experts. However, with the ever-growing volume of data, the bulk of costs in manpower and material resources poses new challenges on reducing the burden of manual labor and improving efficiency. For this reason, it is, therefore, urgent to develop more intelligent and automatic approaches for various HS RS applications. Machine learning (ML) tools with convex optimization have successfully undertaken the tasks of numerous artificial intelligence (AI)-related applications. However, their ability in handling complex practical problems remains limited, particularly for HS data, due to the effects of various spectral variabilities in the process of HS imaging and the complexity and redundancy of higher dimensional HS signals. Compared to the convex models, non-convex modeling, which is capable of characterizing more complex real scenes and providing the model interpretability technically and theoretically, has been proven to be a feasible solution to reduce the gap between challenging HS vision tasks and currently advanced intelligent data processing models.