Hoang, Dinh Thai
Constrained Twin Variational Auto-Encoder for Intrusion Detection in IoT Systems
Dinh, Phai Vu, Nguyen, Quang Uy, Hoang, Dinh Thai, Nguyen, Diep N., Bao, Son Pham, Dutkiewicz, Eryk
Intrusion detection systems (IDSs) play a critical role in protecting billions of IoT devices from malicious attacks. However, the IDSs for IoT devices face inherent challenges of IoT systems, including the heterogeneity of IoT data/devices, the high dimensionality of training data, and the imbalanced data. Moreover, the deployment of IDSs on IoT systems is challenging, and sometimes impossible, due to the limited resources such as memory/storage and computing capability of typical IoT devices. To tackle these challenges, this article proposes a novel deep neural network/architecture called Constrained Twin Variational Auto-Encoder (CTVAE) that can feed classifiers of IDSs with more separable/distinguishable and lower-dimensional representation data. Additionally, in comparison to the state-of-the-art neural networks used in IDSs, CTVAE requires less memory/storage and computing power, hence making it more suitable for IoT IDS systems. Extensive experiments with the 11 most popular IoT botnet datasets show that CTVAE can boost around 1% in terms of accuracy and Fscore in detection attack compared to the state-of-the-art machine learning and representation learning methods, whilst the running time for attack detection is lower than 2E-6 seconds and the model size is lower than 1 MB. We also further investigate various characteristics of CTVAE in the latent space and in the reconstruction representation to demonstrate its efficacy compared with current well-known methods.
Sample-Driven Federated Learning for Energy-Efficient and Real-Time IoT Sensing
Luu, Minh Ngoc, Nguyen, Minh-Duong, Bedeer, Ebrahim, Nguyen, Van Duc, Hoang, Dinh Thai, Nguyen, Diep N., Pham, Quoc-Viet
In the domain of Federated Learning (FL) systems, recent cutting-edge methods heavily rely on ideal conditions convergence analysis. Specifically, these approaches assume that the training datasets on IoT devices possess similar attributes to the global data distribution. However, this approach fails to capture the full spectrum of data characteristics in real-time sensing FL systems. In order to overcome this limitation, we suggest a new approach system specifically designed for IoT networks with real-time sensing capabilities. Our approach takes into account the generalization gap due to the user's data sampling process. By effectively controlling this sampling process, we can mitigate the overfitting issue and improve overall accuracy. In particular, We first formulate an optimization problem that harnesses the sampling process to concurrently reduce overfitting while maximizing accuracy. In pursuit of this objective, our surrogate optimization problem is adept at handling energy efficiency while optimizing the accuracy with high generalization. To solve the optimization problem with high complexity, we introduce an online reinforcement learning algorithm, named Sample-driven Control for Federated Learning (SCFL) built on the Soft Actor-Critic (A2C) framework. This enables the agent to dynamically adapt and find the global optima even in changing environments. By leveraging the capabilities of SCFL, our system offers a promising solution for resource allocation in FL systems with real-time sensing capabilities.
Adversarial Machine Learning for Social Good: Reframing the Adversary as an Ally
Al-Maliki, Shawqi, Qayyum, Adnan, Ali, Hassan, Abdallah, Mohamed, Qadir, Junaid, Hoang, Dinh Thai, Niyato, Dusit, Al-Fuqaha, Ala
Deep Neural Networks (DNNs) have been the driving force behind many of the recent advances in machine learning. However, research has shown that DNNs are vulnerable to adversarial examples -- input samples that have been perturbed to force DNN-based models to make errors. As a result, Adversarial Machine Learning (AdvML) has gained a lot of attention, and researchers have investigated these vulnerabilities in various settings and modalities. In addition, DNNs have also been found to incorporate embedded bias and often produce unexplainable predictions, which can result in anti-social AI applications. The emergence of new AI technologies that leverage Large Language Models (LLMs), such as ChatGPT and GPT-4, increases the risk of producing anti-social applications at scale. AdvML for Social Good (AdvML4G) is an emerging field that repurposes the AdvML bug to invent pro-social applications. Regulators, practitioners, and researchers should collaborate to encourage the development of pro-social applications and hinder the development of anti-social ones. In this work, we provide the first comprehensive review of the emerging field of AdvML4G. This paper encompasses a taxonomy that highlights the emergence of AdvML4G, a discussion of the differences and similarities between AdvML4G and AdvML, a taxonomy covering social good-related concepts and aspects, an exploration of the motivations behind the emergence of AdvML4G at the intersection of ML4G and AdvML, and an extensive summary of the works that utilize AdvML4G as an auxiliary tool for innovating pro-social applications. Finally, we elaborate upon various challenges and open research issues that require significant attention from the research community.
Wirelessly Powered Federated Learning Networks: Joint Power Transfer, Data Sensing, Model Training, and Resource Allocation
Le, Mai, Hoang, Dinh Thai, Nguyen, Diep N., Hwang, Won-Joo, Pham, Quoc-Viet
Federated learning (FL) has found many successes in wireless networks; however, the implementation of FL has been hindered by the energy limitation of mobile devices (MDs) and the availability of training data at MDs. How to integrate wireless power transfer and mobile crowdsensing towards sustainable FL solutions is a research topic entirely missing from the open literature. This work for the first time investigates a resource allocation problem in collaborative sensing-assisted sustainable FL (S2FL) networks with the goal of minimizing the total completion time. We investigate a practical harvesting-sensing-training-transmitting protocol in which energy-limited MDs first harvest energy from RF signals, use it to gain a reward for user participation, sense the training data from the environment, train the local models at MDs, and transmit the model updates to the server. The total completion time minimization problem of jointly optimizing power transfer, transmit power allocation, data sensing, bandwidth allocation, local model training, and data transmission is complicated due to the non-convex objective function, highly non-convex constraints, and strongly coupled variables. We propose a computationally-efficient path-following algorithm to obtain the optimal solution via the decomposition technique. In particular, inner convex approximations are developed for the resource allocation subproblem, and the subproblems are performed alternatively in an iterative fashion. Simulation results are provided to evaluate the effectiveness of the proposed S2FL algorithm in reducing the completion time up to 21.45% in comparison with other benchmark schemes. Further, we investigate an extension of our work from frequency division multiple access (FDMA) to non-orthogonal multiple access (NOMA) and show that NOMA can speed up the total completion time 8.36% on average of the considered FL system.
Collaborative Learning for Cyberattack Detection in Blockchain Networks
Khoa, Tran Viet, Son, Do Hai, Hoang, Dinh Thai, Trung, Nguyen Linh, Quynh, Tran Thi Thuy, Nguyen, Diep N., Ha, Nguyen Viet, Dutkiewicz, Eryk
This article aims to study intrusion attacks and then develop a novel cyberattack detection framework for blockchain networks. Specifically, we first design and implement a blockchain network in our laboratory. This blockchain network will serve two purposes, i.e., to generate the real traffic data (including both normal data and attack data) for our learning models and implement real-time experiments to evaluate the performance of our proposed intrusion detection framework. To the best of our knowledge, this is the first dataset that is synthesized in a laboratory for cyberattacks in a blockchain network. We then propose a novel collaborative learning model that allows efficient deployment in the blockchain network to detect attacks. The main idea of the proposed learning model is to enable blockchain nodes to actively collect data, share the knowledge learned from its data, and then exchange the knowledge with other blockchain nodes in the network. In this way, we can not only leverage the knowledge from all the nodes in the network but also do not need to gather all raw data for training at a centralized node like conventional centralized learning solutions. Such a framework can also avoid the risk of exposing local data's privacy as well as the excessive network overhead/congestion. Both intensive simulations and real-time experiments clearly show that our proposed collaborative learning-based intrusion detection framework can achieve an accuracy of up to 97.7% in detecting attacks.
Network-Aided Intelligent Traffic Steering in 6G O-RAN: A Multi-Layer Optimization Framework
Nguyen, Van-Dinh, Vu, Thang X., Nguyen, Nhan Thanh, Nguyen, Dinh C., Juntti, Markku, Luong, Nguyen Cong, Hoang, Dinh Thai, Nguyen, Diep N., Chatzinotas, Symeon
To enable an intelligent, programmable and multi-vendor radio access network (RAN) for 6G networks, considerable efforts have been made in standardization and development of open RAN (O-RAN). So far, however, the applicability of O-RAN in controlling and optimizing RAN functions has not been widely investigated. In this paper, we jointly optimize the flow-split distribution, congestion control and scheduling (JFCS) to enable an intelligent traffic steering application in O-RAN. Combining tools from network utility maximization and stochastic optimization, we introduce a multi-layer optimization framework that provides fast convergence, long-term utility-optimality and significant delay reduction compared to the state-of-the-art and baseline RAN approaches. Our main contributions are three-fold: i) we propose the novel JFCS framework to efficiently and adaptively direct traffic to appropriate radio units; ii) we develop low-complexity algorithms based on the reinforcement learning, inner approximation and bisection search methods to effectively solve the JFCS problem in different time scales; and iii) the rigorous theoretical performance results are analyzed to show that there exists a scaling factor to improve the tradeoff between delay and utility-optimization. Collectively, the insights in this work will open the door towards fully automated networks with enhanced control and flexibility. Numerical results are provided to demonstrate the effectiveness of the proposed algorithms in terms of the convergence rate, long-term utility-optimality and delay reduction.
Optimal Privacy Preserving for Federated Learning in Mobile Edge Computing
Nguyen, Hai M., Chu, Nam H., Nguyen, Diep N., Hoang, Dinh Thai, Nguyen, Van-Dinh, Ha, Minh Hoang, Dutkiewicz, Eryk, Krunz, Marwan
Federated Learning (FL) with quantization and deliberately added noise over wireless networks is a promising approach to preserve user differential privacy (DP) while reducing wireless resources. Specifically, an FL process can be fused with quantized Binomial mechanism-based updates contributed by multiple users. However, optimizing quantization parameters, communication resources (e.g., transmit power, bandwidth, and quantization bits), and the added noise to guarantee the DP requirement and performance of the learned FL model remains an open and challenging problem. This article aims to jointly optimize the quantization and Binomial mechanism parameters and communication resources to maximize the convergence rate under the constraints of the wireless network and DP requirement. To that end, we first derive a novel DP budget estimation of the FL with quantization/noise that is tighter than the state-of-the-art bound. We then provide a theoretical bound on the convergence rate. This theoretical bound is decomposed into two components, including the variance of the global gradient and the quadratic bias that can be minimized by optimizing the communication resources, and quantization/noise parameters. The resulting optimization turns out to be a Mixed-Integer Non-linear Programming (MINLP) problem. To tackle it, we first transform this MINLP problem into a new problem whose solutions are proved to be the optimal solutions of the original one. We then propose an approximate algorithm to solve the transformed problem with an arbitrary relative error guarantee. Extensive simulations show that under the same wireless resource constraints and DP protection requirements, the proposed approximate algorithm achieves an accuracy close to the accuracy of the conventional FL without quantization/noise. The results can achieve a higher convergence rate while preserving users' privacy.
Dynamic Resource Allocation for Metaverse Applications with Deep Reinforcement Learning
Chu, Nam H., Nguyen, Diep N., Hoang, Dinh Thai, Phan, Khoa T., Dutkiewicz, Eryk, Niyato, Dusit, Shu, Tao
This work proposes a novel framework to dynamically and effectively manage and allocate different types of resources for Metaverse applications, which are forecasted to demand massive resources of various types that have never been seen before. Specifically, by studying functions of Metaverse applications, we first propose an effective solution to divide applications into groups, namely MetaInstances, where common functions can be shared among applications to enhance resource usage efficiency. Then, to capture the real-time, dynamic, and uncertain characteristics of request arrival and application departure processes, we develop a semi-Markov decision process-based framework and propose an intelligent algorithm that can gradually learn the optimal admission policy to maximize the revenue and resource usage efficiency for the Metaverse service provider and at the same time enhance the Quality-of-Service for Metaverse users. Extensive simulation results show that our proposed approach can achieve up to 120% greater revenue for the Metaverse service providers and up to 178.9% higher acceptance probability for Metaverse application requests than those of other baselines.
Distributed Traffic Synthesis and Classification in Edge Networks: A Federated Self-supervised Learning Approach
Xiao, Yong, Xia, Rong, Li, Yingyu, Shi, Guangming, Nguyen, Diep N., Hoang, Dinh Thai, Niyato, Dusit, Krunz, Marwan
With the rising demand for wireless services and increased awareness of the need for data protection, existing network traffic analysis and management architectures are facing unprecedented challenges in classifying and synthesizing the increasingly diverse services and applications. This paper proposes FS-GAN, a federated self-supervised learning framework to support automatic traffic analysis and synthesis over a large number of heterogeneous datasets. FS-GAN is composed of multiple distributed Generative Adversarial Networks (GANs), with a set of generators, each being designed to generate synthesized data samples following the distribution of an individual service traffic, and each discriminator being trained to differentiate the synthesized data samples and the real data samples of a local dataset. A federated learning-based framework is adopted to coordinate local model training processes of different GANs across different datasets. FS-GAN can classify data of unknown types of service and create synthetic samples that capture the traffic distribution of the unknown types. We prove that FS-GAN can minimize the Jensen-Shannon Divergence (JSD) between the distribution of real data across all the datasets and that of the synthesized data samples. FS-GAN also maximizes the JSD among the distributions of data samples created by different generators, resulting in each generator producing synthetic data samples that follow the same distribution as one particular service type. Extensive simulation results show that the classification accuracy of FS-GAN achieves over 20% improvement in average compared to the state-of-the-art clustering-based traffic analysis algorithms. FS-GAN also has the capability to synthesize highly complex mixtures of traffic types without requiring any human-labeled data samples.
Time-sensitive Learning for Heterogeneous Federated Edge Intelligence
Xiao, Yong, Zhang, Xiaohan, Shi, Guangming, Krunz, Marwan, Nguyen, Diep N., Hoang, Dinh Thai
Real-time machine learning has recently attracted significant interest due to its potential to support instantaneous learning, adaptation, and decision making in a wide range of application domains, including self-driving vehicles, intelligent transportation, and industry automation. We investigate real-time ML in a federated edge intelligence (FEI) system, an edge computing system that implements federated learning (FL) solutions based on data samples collected and uploaded from decentralized data networks. FEI systems often exhibit heterogenous communication and computational resource distribution, as well as non-i.i.d. data samples, resulting in long model training time and inefficient resource utilization. Motivated by this fact, we propose a time-sensitive federated learning (TS-FL) framework to minimize the overall run-time for collaboratively training a shared ML model. Training acceleration solutions for both TS-FL with synchronous coordination (TS-FL-SC) and asynchronous coordination (TS-FL-ASC) are investigated. To address straggler effect in TS-FL-SC, we develop an analytical solution to characterize the impact of selecting different subsets of edge servers on the overall model training time. A server dropping-based solution is proposed to allow slow-performance edge servers to be removed from participating in model training if their impact on the resulting model accuracy is limited. A joint optimization algorithm is proposed to minimize the overall time consumption of model training by selecting participating edge servers, local epoch number. We develop an analytical expression to characterize the impact of staleness effect of asynchronous coordination and straggler effect of FL on the time consumption of TS-FL-ASC. Experimental results show that TS-FL-SC and TS-FL-ASC can provide up to 63% and 28% of reduction, in the overall model training time, respectively.