Hirn, Matthew
NervePool: A Simplicial Pooling Layer
McGuire, Sarah, Munch, Elizabeth, Hirn, Matthew
For deep learning problems on graph-structured data, pooling layers are important for down sampling, reducing computational cost, and to minimize overfitting. We define a pooling layer, Nerve-Pool, for data structured as simplicial complexes, which are generalizations of graphs that include higher-dimensional simplices beyond vertices and edges; this structure allows for greater flexibility in modeling higher-order relationships. The proposed simplicial coarsening scheme is built upon partitions of vertices, which allow us to generate hierarchical representations of simplicial complexes, collapsing information in a learned fashion. NervePool builds on the learned vertex cluster assignments and extends to coarsening of higher dimensional simplices in a deterministic fashion. While in practice, the pooling operations are computed via a series of matrix operations, the topological motivation is a set-theoretic construction based on unions of stars of simplices and the nerve complex.
Time-inhomogeneous diffusion geometry and topology
Huguet, Guillaume, Tong, Alexander, Rieck, Bastian, Huang, Jessie, Kuchroo, Manik, Hirn, Matthew, Wolf, Guy, Krishnaswamy, Smita
Diffusion condensation is a dynamic process that yields a sequence of multiscale data representations that aim to encode meaningful abstractions. It has proven effective for manifold learning, denoising, clustering, and visualization of high-dimensional data. Diffusion condensation is constructed as a time-inhomogeneous process where each step first computes and then applies a diffusion operator to the data. We theoretically analyze the convergence and evolution of this process from geometric, spectral, and topological perspectives. From a geometric perspective, we obtain convergence bounds based on the smallest transition probability and the radius of the data, whereas from a spectral perspective, our bounds are based on the eigenspectrum of the diffusion kernel. Our spectral results are of particular interest since most of the literature on data diffusion is focused on homogeneous processes. From a topological perspective, we show diffusion condensation generalizes centroid-based hierarchical clustering. We use this perspective to obtain a bound based on the number of data points, independent of their location. To understand the evolution of the data geometry beyond convergence, we use topological data analysis. We show that the condensation process itself defines an intrinsic condensation homology. We use this intrinsic topology as well as the ambient persistent homology of the condensation process to study how the data changes over diffusion time. We demonstrate both types of topological information in well-understood toy examples. Our work gives theoretical insights into the convergence of diffusion condensation, and shows that it provides a link between topological and geometric data analysis.
Taxonomy of Benchmarks in Graph Representation Learning
Liu, Renming, Cantürk, Semih, Wenkel, Frederik, McGuire, Sarah, Wang, Xinyi, Little, Anna, O'Bray, Leslie, Perlmutter, Michael, Rieck, Bastian, Hirn, Matthew, Wolf, Guy, Rampášek, Ladislav
Graph Neural Networks (GNNs) extend the success of neural networks to graph-structured data by accounting for their intrinsic geometry. While extensive research has been done on developing GNN models with superior performance according to a collection of graph representation learning benchmarks, it is currently not well understood what aspects of a given model are probed by them. For example, to what extent do they test the ability of a model to leverage graph structure vs. node features? Here, we develop a principled approach to taxonomize benchmarking datasets according to a $\textit{sensitivity profile}$ that is based on how much GNN performance changes due to a collection of graph perturbations. Our data-driven analysis provides a deeper understanding of which benchmarking data characteristics are leveraged by GNNs. Consequently, our taxonomy can aid in selection and development of adequate graph benchmarks, and better informed evaluation of future GNN methods. Finally, our approach and implementation in $\texttt{GTaxoGym}$ package are extendable to multiple graph prediction task types and future datasets.
The Manifold Scattering Transform for High-Dimensional Point Cloud Data
Chew, Joyce, Steach, Holly R., Viswanath, Siddharth, Wu, Hau-Tieng, Hirn, Matthew, Needell, Deanna, Krishnaswamy, Smita, Perlmutter, Michael
The manifold scattering transform is a deep feature extractor for data defined on a Riemannian manifold. It is one of the first examples of extending convolutional neural network-like operators to general manifolds. The initial work on this model focused primarily on its theoretical stability and invariance properties but did not provide methods for its numerical implementation except in the case of two-dimensional surfaces with predefined meshes. In this work, we present practical schemes, based on the theory of diffusion maps, for implementing the manifold scattering transform to datasets arising in naturalistic systems, such as single cell genetics, where the data is a high-dimensional point cloud modeled as lying on a low-dimensional manifold. We show that our methods are effective for signal classification and manifold classification tasks.
Overcoming Oversmoothness in Graph Convolutional Networks via Hybrid Scattering Networks
Wenkel, Frederik, Min, Yimeng, Hirn, Matthew, Perlmutter, Michael, Wolf, Guy
Geometric deep learning (GDL) has made great strides towards generalizing the design of structure-aware neural network architectures from traditional domains to non-Euclidean ones, such as graphs. This gave rise to graph neural network (GNN) models that can be applied to graph-structured datasets arising, for example, in social networks, biochemistry, and material science. Graph convolutional networks (GCNs) in particular, inspired by their Euclidean counterparts, have been successful in processing graph data by extracting structure-aware features. However, current GNN models (and GCNs in particular) are known to be constrained by various phenomena that limit their expressive power and ability to generalize to more complex graph datasets. Most models essentially rely on low-pass filtering of graph signals via local averaging operations, thus leading to oversmoothing. Here, we propose a hybrid GNN framework that combines traditional GCN filters with band-pass filters defined via the geometric scattering transform. We further introduce an attention framework that allows the model to locally attend over the combined information from different GNN filters at the node level. Our theoretical results establish the complementary benefits of the scattering filters to leverage structural information from the graph, while our experiments show the benefits of our method on various learning tasks.
Wavelet Scattering Networks for Atomistic Systems with Extrapolation of Material Properties
Sinz, Paul, Swift, Michael W., Brumwell, Xavier, Liu, Jialin, Kim, Kwang Jin, Qi, Yue, Hirn, Matthew
The dream of machine learning in materials science is for a model to learn the underlying physics of an atomic system, allowing it to move beyond interpolation of the training set to the prediction of properties that were not present in the original training data. In addition to advances in machine learning architectures and training techniques, achieving this ambitious goal requires a method to convert a 3D atomic system into a feature representation that preserves rotational and translational symmetry, smoothness under small perturbations, and invariance under re-ordering. The atomic orbital wavelet scattering transform preserves these symmetries by construction, and has achieved great success as a featurization method for machine learning energy prediction. Both in small molecules and in the bulk amorphous $\text{Li}_{\alpha}\text{Si}$ system, machine learning models using wavelet scattering coefficients as features have demonstrated a comparable accuracy to Density Functional Theory at a small fraction of the computational cost. In this work, we test the generalizability of our $\text{Li}_{\alpha}\text{Si}$ energy predictor to properties that were not included in the training set, such as elastic constants and migration barriers. We demonstrate that statistical feature selection methods can reduce over-fitting and lead to remarkable accuracy in these extrapolation tasks.
Geometric Wavelet Scattering Networks on Compact Riemannian Manifolds
Perlmutter, Michael, Gao, Feng, Wolf, Guy, Hirn, Matthew
The Euclidean scattering transform was introduced nearly a decade ago to improve the mathematical understanding of convolutional neural networks. Inspired by recent interest in geometric deep learning, which aims to generalize convolutional neural networks to manifold and graph-structured domains, we define a geometric scattering transform on manifolds. Similar to the Euclidean scattering transform, the geometric scattering transform is based on a cascade of wavelet filters and pointwise nonlinearities. It is invariant to local isometries and stable to certain types of diffeomorphisms. Empirical results demonstrate its utility on several geometric learning tasks. Our results generalize the deformation stability and local translation invariance of Euclidean scattering, and demonstrate the importance of linking the used filter structures to the underlying geometry of the data.
Scattering Statistics of Generalized Spatial Poisson Point Processes
Perlmutter, Michael, He, Jieqian, Hirn, Matthew
We present a machine learning model for the analysis of randomly generated discrete signals, which we model as the points of a homogeneous or inhomogeneous, compound Poisson point process. Like the wavelet scattering transform introduced by S. Mallat, our construction is a mathematical model of convolutional neural networks and is naturally invariant to translations and reflections. Our model replaces wavelets with Gabor-type measurements and therefore decouples the roles of scale and frequency. We show that, with suitably chosen nonlinearities, our measurements distinguish Poisson point processes from common self-similar processes, and separate different types of Poisson point processes based on the first and second moments of the arrival intensity $\lambda(t)$, as well as the absolute moments of the charges associated to each point.
Geometric Scattering on Manifolds
Perlmutter, Michael, Wolf, Guy, Hirn, Matthew
We present a mathematical model for geometric deep learning based upon a scattering transform defined over manifolds, which generalizes the wavelet scattering transform of Mallat. This geometric scattering transform is (locally) invariant to isometry group actions, and we conjecture that it is stable to actions of the diffeomorphism group.
Steerable Wavelet Scattering for 3D Atomic Systems with Application to Li-Si Energy Prediction
Brumwell, Xavier, Sinz, Paul, Kim, Kwang Jin, Qi, Yue, Hirn, Matthew
A general machine learning architecture is introduced that uses wavelet scattering coefficients of an inputted three dimensional signal as features. Solid harmonic wavelet scattering transforms of three dimensional signals were previously introduced in a machine learning framework for the regression of properties of small organic molecules. Here this approach is extended for general steerable wavelets which are equivariant to translations and rotations, resulting in a sparse model of the target function. The scattering coefficients inherit from the wavelets invariance to translations and rotations. As an illustration of this approach a linear regression model is learned for the formation energy of amorphous lithium-silicon material states trained over a database generated using plane-wave Density Functional Theory methods. State-of-the-art results are produced as compared to other machine learning approaches over similarly generated databases.