Heutte, Laurent
Random Forest Kernel for High-Dimension Low Sample Size Classification
Cavalheiro, Lucca Portes, Bernard, Simon, Barddal, Jean Paul, Heutte, Laurent
High dimension, low sample size (HDLSS) problems are numerous among real-world applications of machine learning. From medical images to text processing, traditional machine learning algorithms are usually unsuccessful in learning the best possible concept from such data. In a previous work, we proposed a dissimilarity-based approach for multi-view classification, the Random Forest Dissimilarity (RFD), that perfoms state-of-the-art results for such problems. In this work, we transpose the core principle of this approach to solving HDLSS classification problems, by using the RF similarity measure as a learned precomputed SVM kernel (RFSVM). We show that such a learned similarity measure is particularly suited and accurate for this classification context. Experiments conducted on 40 public HDLSS classification datasets, supported by rigorous statistical analyses, show that the RFSVM method outperforms existing methods for the majority of HDLSS problems and remains at the same time very competitive for low or non-HDLSS problems.
Approximating DTW with a convolutional neural network on EEG data
Lerogeron, Hugo, Picot-Clemente, Romain, Rakotomamonjy, Alain, Heutte, Laurent
Dynamic Time Wrapping (DTW) is a widely used algorithm for measuring similarities between two time series. It is especially valuable in a wide variety of applications, such as clustering, anomaly detection, classification, or video segmentation, where the time-series have different timescales, are irregularly sampled, or are shifted. However, it is not prone to be considered as a loss function in an end-to-end learning framework because of its non-differentiability and its quadratic temporal complexity. While differentiable variants of DTW have been introduced by the community, they still present some drawbacks: computing the distance is still expensive and this similarity tends to blur some differences in the time-series. In this paper, we propose a fast and differentiable approximation of DTW by comparing two architectures: the first one for learning an embedding in which the Euclidean distance mimics the DTW, and the second one for directly predicting the DTW output using regression. We build the former by training a siamese neural network to regress the DTW value between two time-series. Depending on the nature of the activation function, this approximation naturally supports differentiation, and it is efficient to compute. We show, in a time-series retrieval context on EEG datasets, that our methods achieve at least the same level of accuracy as other DTW main approximations with higher computational efficiency. We also show that it can be used to learn in an end-to-end setting on long time series by proposing generative models of EEGs.
Random Forest for Dissimilarity-based Multi-view Learning
Bernard, Simon, Cao, Hongliu, Sabourin, Robert, Heutte, Laurent
Many classification problems are naturally multi-view in the sense their data are described through multiple heterogeneous descriptions. For such tasks, dissimilarity strategies are effective ways to make the different descriptions comparable and to easily merge them, by (i) building intermediate dissimilarity representations for each view and (ii) fusing these representations by averaging the dissimilarities over the views. In this work, we show that the Random Forest proximity measure can be used to build the dissimilarity representations, since this measure reflects similarities between features but also class membership. We then propose a Dynamic View Selection method to better combine the view-specific dissimilarity representations. This allows to take a decision, on each instance to predict, with only the most relevant views for that instance. Experiments are conducted on several real-world multi-view datasets, and show that the Dynamic View Selection offers a significant improvement in performance compared to the simple average combination and two state-of-the-art static view combinations.
A Novel Random Forest Dissimilarity Measure for Multi-View Learning
Cao, Hongliu, Bernard, Simon, Sabourin, Robert, Heutte, Laurent
Multi-view learning is a learning task in which data is described by several concurrent representations. Its main challenge is most often to exploit the complementarities between these representations to help solve a classification/regression task. This is a challenge that can be met nowadays if there is a large amount of data available for learning. However, this is not necessarily true for all real-world problems, where data are sometimes scarce (e.g. problems related to the medical environment). In these situations, an effective strategy is to use intermediate representations based on the dissimilarities between instances. This work presents new ways of constructing these dissimilarity representations, learning them from data with Random Forest classifiers. More precisely, two methods are proposed, which modify the Random Forest proximity measure, to adapt it to the context of High Dimension Low Sample Size (HDLSS) multi-view classification problems. The second method, based on an Instance Hardness measurement, is significantly more accurate than other state-of-the-art measurements including the original RF Proximity measurement and the Large Margin Nearest Neighbor (LMNN) metric learning measurement.