Goto

Collaborating Authors

 Hesaraki, Saba


A Comprehensive Analysis on Machine Learning based Methods for Lung Cancer Level Classification

arXiv.org Artificial Intelligence

Lung cancer is a major issue in worldwide public health, requiring early diagnosis using stable techniques. This work begins a thorough investigation of the use of machine learning (ML) methods for precise classification of lung cancer stages. A cautious analysis is performed to overcome overfitting issues in model performance, taking into account minimum child weight and learning rate. A set of machine learning (ML) models including XGBoost (XGB), LGBM, Adaboost, Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), CatBoost, and k-Nearest Neighbor (k-NN) are run methodically and contrasted. Furthermore, the correlation between features and targets is examined using the deep neural network (DNN) model and thus their capability in detecting complex patternsis established. It is argued that several ML models can be capable of classifying lung cancer stages with great accuracy. In spite of the complexity of DNN architectures, traditional ML models like XGBoost, LGBM, and Logistic Regression excel with superior performance. The models perform better than the others in lung cancer prediction on the complete set of comparative metrics like accuracy, precision, recall, and F-1 score


UNet++ and LSTM combined approach for Breast Ultrasound Image Segmentation

arXiv.org Artificial Intelligence

Breast cancer stands as a prevalent cause of fatality among females on a global scale, with prompt detection playing a pivotal role in diminishing mortality rates. The utilization of ultrasound scans in the BUSI dataset for medical imagery pertaining to breast cancer has exhibited commendable segmentation outcomes through the application of UNet and UNet++ networks. Nevertheless, a notable drawback of these models resides in their inattention towards the temporal aspects embedded within the images. This research endeavors to enrich the UNet++ architecture by integrating LSTM layers and self-attention mechanisms to exploit temporal characteristics for segmentation purposes. Furthermore, the incorporation of a Multiscale Feature Extraction Module aims to grasp varied scale features within the UNet++. Through the amalgamation of our proposed methodology with data augmentation on the BUSI with GT dataset, an accuracy rate of 98.88%, specificity of 99.53%, precision of 95.34%, sensitivity of 91.20%, F1-score of 93.74, and Dice coefficient of 92.74% are achieved. These findings demonstrate competitiveness with cutting-edge techniques outlined in existing literature.


BERTCaps: BERT Capsule for Persian Multi-Domain Sentiment Analysis

arXiv.org Artificial Intelligence

Multidomain sentiment analysis involves estimating the polarity of an unstructured text by exploiting domain specific information. One of the main issues common to the approaches discussed in the literature is their poor applicability to domains that differ from those used to construct opinion models.This paper aims to present a new method for Persian multidomain SA analysis using deep learning approaches. The proposed BERTCapsules approach consists of a combination of BERT and Capsule models. In this approach, BERT was used for Instance representation, and Capsule Structure was used to learn the extracted graphs. Digikala dataset, including ten domains with both positive and negative polarity, was used to evaluate this approach. The evaluation of the BERTCaps model achieved an accuracy of 0.9712 in sentiment classification binary classification and 0.8509 in domain classification .


Classifying Objects in 3D Point Clouds Using Recurrent Neural Network: A GRU LSTM Hybrid Approach

arXiv.org Artificial Intelligence

Accurate classification of objects in 3D point clouds is a significant problem in several applications, such as autonomous navigation and augmented/virtual reality scenarios, which has become a research hot spot. In this paper, we presented a deep learning strategy for 3D object classification in augmented reality. The proposed approach is a combination of the GRU and LSTM. LSTM networks learn longer dependencies well, but due to the number of gates, it takes longer to train; on the other hand, GRU networks have a weaker performance than LSTM, but their training speed is much higher than GRU, which is The speed is due to its fewer gates. The proposed approach used the combination of speed and accuracy of these two networks. The proposed approach achieved an accuracy of 0.99 in the 4,499,0641 points dataset, which includes eight classes (unlabeled, man-made terrain, natural terrain, high vegetation, low vegetation, buildings, hardscape, scanning artifacts, cars). Meanwhile, the traditional machine learning approaches could achieve a maximum accuracy of 0.9489 in the best case. Keywords: Point Cloud Classification, Virtual Reality, Hybrid Model, GRULSTM, GRU, LSTM


CapsF: Capsule Fusion for Extracting psychiatric stressors for suicide from twitter

arXiv.org Artificial Intelligence

Along with factors such as cancer, blood pressure, street accidents and stroke, suicide has been one of Iran main causes of death. One of the main reasons for suicide is psychological stressors. Identifying psychological stressors in an at risk population can help in the early prevention of suicidal and suicidal behaviours. In recent years, the widespread popularity and flow of real time information sharing of social media have allowed for potential early intervention in large scale and even small scale populations. However, some automated approaches to extract psychiatric stressors from Twitter have been presented, but most of this research has been for non Persian languages. This study aims to investigate the techniques of detecting psychological stress related to suicide from Persian tweets using learning based methods. The proposed capsule based approach achieved a binary classification accuracy of 0.83.