Herzog, Alexander
Gemini Robotics: Bringing AI into the Physical World
Gemini Robotics Team, null, Abeyruwan, Saminda, Ainslie, Joshua, Alayrac, Jean-Baptiste, Arenas, Montserrat Gonzalez, Armstrong, Travis, Balakrishna, Ashwin, Baruch, Robert, Bauza, Maria, Blokzijl, Michiel, Bohez, Steven, Bousmalis, Konstantinos, Brohan, Anthony, Buschmann, Thomas, Byravan, Arunkumar, Cabi, Serkan, Caluwaerts, Ken, Casarini, Federico, Chang, Oscar, Chen, Jose Enrique, Chen, Xi, Chiang, Hao-Tien Lewis, Choromanski, Krzysztof, D'Ambrosio, David, Dasari, Sudeep, Davchev, Todor, Devin, Coline, Di Palo, Norman, Ding, Tianli, Dostmohamed, Adil, Driess, Danny, Du, Yilun, Dwibedi, Debidatta, Elabd, Michael, Fantacci, Claudio, Fong, Cody, Frey, Erik, Fu, Chuyuan, Giustina, Marissa, Gopalakrishnan, Keerthana, Graesser, Laura, Hasenclever, Leonard, Heess, Nicolas, Hernaez, Brandon, Herzog, Alexander, Hofer, R. Alex, Humplik, Jan, Iscen, Atil, Jacob, Mithun George, Jain, Deepali, Julian, Ryan, Kalashnikov, Dmitry, Karagozler, M. Emre, Karp, Stefani, Kew, Chase, Kirkland, Jerad, Kirmani, Sean, Kuang, Yuheng, Lampe, Thomas, Laurens, Antoine, Leal, Isabel, Lee, Alex X., Lee, Tsang-Wei Edward, Liang, Jacky, Lin, Yixin, Maddineni, Sharath, Majumdar, Anirudha, Michaely, Assaf Hurwitz, Moreno, Robert, Neunert, Michael, Nori, Francesco, Parada, Carolina, Parisotto, Emilio, Pastor, Peter, Pooley, Acorn, Rao, Kanishka, Reymann, Krista, Sadigh, Dorsa, Saliceti, Stefano, Sanketi, Pannag, Sermanet, Pierre, Shah, Dhruv, Sharma, Mohit, Shea, Kathryn, Shu, Charles, Sindhwani, Vikas, Singh, Sumeet, Soricut, Radu, Springenberg, Jost Tobias, Sterneck, Rachel, Surdulescu, Razvan, Tan, Jie, Tompson, Jonathan, Vanhoucke, Vincent, Varley, Jake, Vesom, Grace, Vezzani, Giulia, Vinyals, Oriol, Wahid, Ayzaan, Welker, Stefan, Wohlhart, Paul, Xia, Fei, Xiao, Ted, Xie, Annie, Xie, Jinyu, Xu, Peng, Xu, Sichun, Xu, Ying, Xu, Zhuo, Yang, Yuxiang, Yao, Rui, Yaroshenko, Sergey, Yu, Wenhao, Yuan, Wentao, Zhang, Jingwei, Zhang, Tingnan, Zhou, Allan, Zhou, Yuxiang
Recent advancements in large multimodal models have led to the emergence of remarkable generalist capabilities in digital domains, yet their translation to physical agents such as robots remains a significant challenge. This report introduces a new family of AI models purposefully designed for robotics and built upon the foundation of Gemini 2.0. We present Gemini Robotics, an advanced Vision-Language-Action (VLA) generalist model capable of directly controlling robots. Gemini Robotics executes smooth and reactive movements to tackle a wide range of complex manipulation tasks while also being robust to variations in object types and positions, handling unseen environments as well as following diverse, open vocabulary instructions. We show that with additional fine-tuning, Gemini Robotics can be specialized to new capabilities including solving long-horizon, highly dexterous tasks, learning new short-horizon tasks from as few as 100 demonstrations and adapting to completely novel robot embodiments. This is made possible because Gemini Robotics builds on top of the Gemini Robotics-ER model, the second model we introduce in this work. Gemini Robotics-ER (Embodied Reasoning) extends Gemini's multimodal reasoning capabilities into the physical world, with enhanced spatial and temporal understanding. This enables capabilities relevant to robotics including object detection, pointing, trajectory and grasp prediction, as well as multi-view correspondence and 3D bounding box predictions. We show how this novel combination can support a variety of robotics applications. We also discuss and address important safety considerations related to this new class of robotics foundation models. The Gemini Robotics family marks a substantial step towards developing general-purpose robots that realizes AI's potential in the physical world.
Q-Transformer: Scalable Offline Reinforcement Learning via Autoregressive Q-Functions
Chebotar, Yevgen, Vuong, Quan, Irpan, Alex, Hausman, Karol, Xia, Fei, Lu, Yao, Kumar, Aviral, Yu, Tianhe, Herzog, Alexander, Pertsch, Karl, Gopalakrishnan, Keerthana, Ibarz, Julian, Nachum, Ofir, Sontakke, Sumedh, Salazar, Grecia, Tran, Huong T, Peralta, Jodilyn, Tan, Clayton, Manjunath, Deeksha, Singht, Jaspiar, Zitkovich, Brianna, Jackson, Tomas, Rao, Kanishka, Finn, Chelsea, Levine, Sergey
In this work, we present a scalable reinforcement learning method for training multi-task policies from large offline datasets that can leverage both human demonstrations and autonomously collected data. Our method uses a Transformer to provide a scalable representation for Q-functions trained via offline temporal difference backups. We therefore refer to the method as Q-Transformer. By discretizing each action dimension and representing the Q-value of each action dimension as separate tokens, we can apply effective high-capacity sequence modeling techniques for Q-learning. We present several design decisions that enable good performance with offline RL training, and show that Q-Transformer outperforms prior offline RL algorithms and imitation learning techniques on a large diverse real-world robotic manipulation task suite. The project's website and videos can be found at https://qtransformer.github.io
RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control
Brohan, Anthony, Brown, Noah, Carbajal, Justice, Chebotar, Yevgen, Chen, Xi, Choromanski, Krzysztof, Ding, Tianli, Driess, Danny, Dubey, Avinava, Finn, Chelsea, Florence, Pete, Fu, Chuyuan, Arenas, Montse Gonzalez, Gopalakrishnan, Keerthana, Han, Kehang, Hausman, Karol, Herzog, Alexander, Hsu, Jasmine, Ichter, Brian, Irpan, Alex, Joshi, Nikhil, Julian, Ryan, Kalashnikov, Dmitry, Kuang, Yuheng, Leal, Isabel, Lee, Lisa, Lee, Tsang-Wei Edward, Levine, Sergey, Lu, Yao, Michalewski, Henryk, Mordatch, Igor, Pertsch, Karl, Rao, Kanishka, Reymann, Krista, Ryoo, Michael, Salazar, Grecia, Sanketi, Pannag, Sermanet, Pierre, Singh, Jaspiar, Singh, Anikait, Soricut, Radu, Tran, Huong, Vanhoucke, Vincent, Vuong, Quan, Wahid, Ayzaan, Welker, Stefan, Wohlhart, Paul, Wu, Jialin, Xia, Fei, Xiao, Ted, Xu, Peng, Xu, Sichun, Yu, Tianhe, Zitkovich, Brianna
We study how vision-language models trained on Internet-scale data can be incorporated directly into end-to-end robotic control to boost generalization and enable emergent semantic reasoning. Our goal is to enable a single end-to-end trained model to both learn to map robot observations to actions and enjoy the benefits of large-scale pretraining on language and vision-language data from the web. To this end, we propose to co-fine-tune state-of-the-art vision-language models on both robotic trajectory data and Internet-scale vision-language tasks, such as visual question answering. In contrast to other approaches, we propose a simple, general recipe to achieve this goal: in order to fit both natural language responses and robotic actions into the same format, we express the actions as text tokens and incorporate them directly into the training set of the model in the same way as natural language tokens. We refer to such category of models as vision-language-action models (VLA) and instantiate an example of such a model, which we call RT-2. Our extensive evaluation (6k evaluation trials) shows that our approach leads to performant robotic policies and enables RT-2 to obtain a range of emergent capabilities from Internet-scale training. This includes significantly improved generalization to novel objects, the ability to interpret commands not present in the robot training data (such as placing an object onto a particular number or icon), and the ability to perform rudimentary reasoning in response to user commands (such as picking up the smallest or largest object, or the one closest to another object). We further show that incorporating chain of thought reasoning allows RT-2 to perform multi-stage semantic reasoning, for example figuring out which object to pick up for use as an improvised hammer (a rock), or which type of drink is best suited for someone who is tired (an energy drink).
Deep RL at Scale: Sorting Waste in Office Buildings with a Fleet of Mobile Manipulators
Herzog, Alexander, Rao, Kanishka, Hausman, Karol, Lu, Yao, Wohlhart, Paul, Yan, Mengyuan, Lin, Jessica, Arenas, Montserrat Gonzalez, Xiao, Ted, Kappler, Daniel, Ho, Daniel, Rettinghouse, Jarek, Chebotar, Yevgen, Lee, Kuang-Huei, Gopalakrishnan, Keerthana, Julian, Ryan, Li, Adrian, Fu, Chuyuan Kelly, Wei, Bob, Ramesh, Sangeetha, Holden, Khem, Kleiven, Kim, Rendleman, David, Kirmani, Sean, Bingham, Jeff, Weisz, Jon, Xu, Ying, Lu, Wenlong, Bennice, Matthew, Fong, Cody, Do, David, Lam, Jessica, Bai, Yunfei, Holson, Benjie, Quinlan, Michael, Brown, Noah, Kalakrishnan, Mrinal, Ibarz, Julian, Pastor, Peter, Levine, Sergey
We describe a system for deep reinforcement learning of robotic manipulation skills applied to a large-scale real-world task: sorting recyclables and trash in office buildings. Real-world deployment of deep RL policies requires not only effective training algorithms, but the ability to bootstrap real-world training and enable broad generalization. To this end, our system combines scalable deep RL from real-world data with bootstrapping from training in simulation, and incorporates auxiliary inputs from existing computer vision systems as a way to boost generalization to novel objects, while retaining the benefits of end-to-end training. We analyze the tradeoffs of different design decisions in our system, and present a large-scale empirical validation that includes training on real-world data gathered over the course of 24 months of experimentation, across a fleet of 23 robots in three office buildings, with a total training set of 9527 hours of robotic experience. Our final validation also consists of 4800 evaluation trials across 240 waste station configurations, in order to evaluate in detail the impact of the design decisions in our system, the scaling effects of including more real-world data, and the performance of the method on novel objects. The projects website and videos can be found at \href{http://rl-at-scale.github.io}{rl-at-scale.github.io}.
QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation
Kalashnikov, Dmitry, Irpan, Alex, Pastor, Peter, Ibarz, Julian, Herzog, Alexander, Jang, Eric, Quillen, Deirdre, Holly, Ethan, Kalakrishnan, Mrinal, Vanhoucke, Vincent, Levine, Sergey
In this paper, we study the problem of learning vision-based dynamic manipulation skills using a scalable reinforcement learning approach. We study this problem in the context of grasping, a longstanding challenge in robotic manipulation. In contrast to static learning behaviors that choose a grasp point and then execute the desired grasp, our method enables closed-loop vision-based control, whereby the robot continuously updates its grasp strategy based on the most recent observations to optimize long-horizon grasp success. To that end, we introduce QT-Opt, a scalable self-supervised vision-based reinforcement learning framework that can leverage over 580k real-world grasp attempts to train a deep neural network Q-function with over 1.2M parameters to perform closed-loop, real-world grasping that generalizes to 96% grasp success on unseen objects. Aside from attaining a very high success rate, our method exhibits behaviors that are quite distinct from more standard grasping systems: using only RGB vision-based perception from an over-the-shoulder camera, our method automatically learns regrasping strategies, probes objects to find the most effective grasps, learns to reposition objects and perform other non-prehensile pre-grasp manipulations, and responds dynamically to disturbances and perturbations.
Scalable Dynamic Topic Modeling with Clustered Latent Dirichlet Allocation (CLDA)
Gropp, Chris, Herzog, Alexander, Safro, Ilya, Wilson, Paul W., Apon, Amy W.
Topic modeling, a method for extracting the underlying themes from a collection of documents, is an increasingly important component of the design of intelligent systems enabling the sense-making of highly dynamic and diverse streams of text data. Traditional methods such as Dynamic Topic Modeling (DTM) do not lend themselves well to direct parallelization because of dependencies from one time step to another. In this paper, we introduce and empirically analyze Clustered Latent Dirichlet Allocation (CLDA), a method for extracting dynamic latent topics from a collection of documents. Our approach is based on data decomposition in which the data is partitioned into segments, followed by topic modeling on the individual segments. The resulting local models are then combined into a global solution using clustering. The decomposition and resulting parallelization leads to very fast runtime even on very large datasets. Our approach furthermore provides insight into how the composition of topics changes over time and can also be applied using other data partitioning strategies over any discrete features of the data, such as geographic features or classes of users. In this paper CLDA is applied successfully to seventeen years of NIPS conference papers (2,484 documents and 3,280,697 words), seventeen years of computer science journal abstracts (533,560 documents and 32,551,540 words), and to forty years of the PubMed corpus (4,025,978 documents and 273,853,980 words).
Database of Parliamentary Speeches in Ireland, 1919-2013
Herzog, Alexander, Mikhaylov, Slava J.
We present a database of parliamentary debates that contains the complete record of parliamentary speeches from D\'ail \'Eireann, the lower house and principal chamber of the Irish parliament, from 1919 to 2013. In addition, the database contains background information on all TDs (Teachta D\'ala, members of parliament), such as their party affiliations, constituencies and office positions. The current version of the database includes close to 4.5 million speeches from 1,178 TDs. The speeches were downloaded from the official parliament website and further processed and parsed with a Python script. Background information on TDs was collected from the member database of the parliament website. Data on cabinet positions (ministers and junior ministers) was collected from the official website of the government. A record linkage algorithm and human coders were used to match TDs and ministers.